9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Productivity and technological quality of sugarcane under fertilization of nitrogen and molybdenum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract: The increase of N fertilization in sugarcane can negatively influence the technological quality of the crop for sugar and alcohol production. The use of Mo in fertilization combined with N can reduce this effect and increase agricultural and sugar yield. The objective of this study was to evaluate the levels of Mo in soil, roots and leaves of sugarcane fertilized with N and Mo, to measure agricultural and sugar productivity and to evaluate quality of the technological attributes for production of sugar and alcohol. Two varieties were cultivated (RB867515 and RB92579) under field conditions, submitted to two doses of N (0 and 60 kg ha-1) and two doses of Mo (0 and 200 g ha-1) both applied to the soil. The source of N used was urea and the source of Mo was sodium molybdate. RB867515 was influenced by Mo and agricultural and sugar productivity increased by 21%. N fertilization did not increase agricultural productivity but reduced the technological quality of sugarcane, and Mo did not change this reduction. It is suggested that N fertilization should be reduced in first crop cycle and Mo fertilization should be stimulated.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          The role of molybdenum in agricultural plant production.

          The importance of molybdenum for plant growth is disproportionate with respect to the absolute amounts required by most plants. Apart from Cu, Mo is the least abundant essential micronutrient found in most plant tissues and is often set as the base from which all other nutrients are compared and measured. Molybdenum is utilized by selected enzymes to carry out redox reactions. Enzymes that require molybdenum for activity include nitrate reductase, xanthine dehydrogenase, aldehyde oxidase and sulfite oxidase. Loss of Mo-dependent enzyme activity (directly or indirectly through low internal molybdenum levels) impacts upon plant development, in particular, those processes involving nitrogen metabolism and the synthesis of the phytohormones abscisic acid and indole-3 butyric acid. Currently, there is little information on how plants access molybdate from the soil solution and redistribute it within the plant. In this review, the role of molybdenum in plants is discussed, focusing on its current constraints in some agricultural situations and where increased molybdenum nutrition may aid in agricultural plant development and yields. Molybdenum deficiencies are considered rare in most agricultural cropping areas; however, the phenotype is often misdiagnosed and attributed to other downstream effects associated with its role in various enzymatic redox reactions. Molybdenum fertilization through foliar sprays can effectively supplement internal molybdenum deficiencies and rescue the activity of molybdoenzymes. The current understanding on how plants access molybdate from the soil solution or later redistribute it once in the plant is still unclear; however, plants have similar physiological molybdenum transport phenotypes to those found in prokaryotic systems. Thus, careful analysis of existing prokaryotic molybdate transport mechanisms, as well as a re-examination of know anion transport mechanisms present in plants, will help to resolve how this important trace element is accumulated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nitrate Paradigm Does Not Hold Up for Sugarcane

            Modern agriculture is based on the notion that nitrate is the main source of nitrogen (N) for crops, but nitrate is also the most mobile form of N and easily lost from soil. Efficient acquisition of nitrate by crops is therefore a prerequisite for avoiding off-site N pollution. Sugarcane is considered the most suitable tropical crop for biofuel production, but surprisingly high N fertilizer applications in main producer countries raise doubt about the sustainability of production and are at odds with a carbon-based crop. Examining reasons for the inefficient use of N fertilizer, we hypothesized that sugarcane resembles other giant tropical grasses which inhibit the production of nitrate in soil and differ from related grain crops with a confirmed ability to use nitrate. The results of our study support the hypothesis that N-replete sugarcane and ancestral species in the Andropogoneae supertribe strongly prefer ammonium over nitrate. Sugarcane differs from grain crops, sorghum and maize, which acquired both N sources equally well, while giant grass, Erianthus, displayed an intermediate ability to use nitrate. We conclude that discrimination against nitrate and a low capacity to store nitrate in shoots prevents commercial sugarcane varieties from taking advantage of the high nitrate concentrations in fertilized soils in the first three months of the growing season, leaving nitrate vulnerable to loss. Our study addresses a major caveat of sugarcane production and affords a strong basis for improvement through breeding cultivars with enhanced capacity to use nitrate as well as through agronomic measures that reduce nitrification in soil.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions

                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                jsspn
                Journal of soil science and plant nutrition
                J. Soil Sci. Plant Nutr.
                Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo (Temuco, , Chile )
                0718-9516
                December 2018
                : 18
                : 4
                : 1002-1020
                Affiliations
                [1] Vitória de Santo Antão PE orgnameFederal Institute of Education, Science and Technology of Pernambuco Brazil
                [3] Carpina PE orgnameExperimental Station of Sugarcane Brasil
                [2] Recife PE orgnameFederal Rural University orgdiv1Department of Agronomy Brazil
                Article
                S0718-95162018000401002
                51b47681-fdc6-4a61-85f1-7e6774f0df02

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 01 November 2017
                : 26 October 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 33, Pages: 19
                Product

                SciELO Chile

                Categories
                Research Article

                molybdenum nutrition,Availability of molybdenum,nitrogen nutrition,technological attributes for sugar and alcohol production

                Comments

                Comment on this article