16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Classification of Autism Spectrum Disorder Using Random Support Vector Machine Cluster

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorder (ASD) is mainly reflected in the communication and language barriers, difficulties in social communication, and it is a kind of neurological developmental disorder. Most researches have used the machine learning method to classify patients and normal controls, among which support vector machines (SVM) are widely employed. But the classification accuracy of SVM is usually low, due to the usage of a single SVM as classifier. Thus, we used multiple SVMs to classify ASD patients and typical controls (TC). Resting-state functional magnetic resonance imaging (fMRI) data of 46 TC and 61 ASD patients were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. Only 84 of 107 subjects are utilized in experiments because the translation or rotation of 7 TC and 16 ASD patients has surpassed ±2 mm or ±2°. Then the random SVM cluster was proposed to distinguish TC and ASD. The results show that this method has an excellent classification performance based on all the features. Furthermore, the accuracy based on the optimal feature set could reach to 96.15%. Abnormal brain regions could also be found, such as inferior frontal gyrus (IFG) (orbital and opercula part), hippocampus, and precuneus. It is indicated that the method of random SVM cluster may apply to the auxiliary diagnosis of ASD.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review.

          Standard univariate analysis of neuroimaging data has revealed a host of neuroanatomical and functional differences between healthy individuals and patients suffering a wide range of neurological and psychiatric disorders. Significant only at group level however these findings have had limited clinical translation, and recent attention has turned toward alternative forms of analysis, including Support-Vector-Machine (SVM). A type of machine learning, SVM allows categorisation of an individual's previously unseen data into a predefined group using a classification algorithm, developed on a training data set. In recent years, SVM has been successfully applied in the context of disease diagnosis, transition prediction and treatment prognosis, using both structural and functional neuroimaging data. Here we provide a brief overview of the method and review those studies that applied it to the investigation of Alzheimer's disease, schizophrenia, major depression, bipolar disorder, presymptomatic Huntington's disease, Parkinson's disease and autistic spectrum disorder. We conclude by discussing the main theoretical and practical challenges associated with the implementation of this method into the clinic and possible future directions. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan.

            Over the past decade, in-vivo MRI studies have provided many invaluable insights into the neural substrates underlying autism spectrum disorder (ASD), which is now known to be associated with neurodevelopmental variations in brain anatomy, functioning, and connectivity. These systems-level features of ASD pathology seem to develop differentially across the human lifespan so that the cortical abnormalities that occur in children with ASD differ from those noted at other stages of life. Thus, investigation of the brain in ASD poses particular methodological challenges, which must be addressed to enable the comparison of results across studies. Novel analytical approaches are also being developed to facilitate the translation of findings from the research to the clinical setting. In the future, the insights provided by human neuroimaging studies could contribute to biomarker development for ASD and other neurodevelopmental disorders, and to new approaches to diagnosis and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional connectivity magnetic resonance imaging classification of autism.

              Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear whether functional connectivity is sufficiently robust to be used as a diagnostic or prognostic metric in individual patients with autism. We obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the entire grey matter (26.4 million connections) in a well-characterized set of 40 male adolescents and young adults with autism and 40 age-, sex- and IQ-matched typically developing subjects. A single resting state blood oxygen level-dependent scan of 8 min was used for the classification in each subject. A leave-one-out classifier successfully distinguished autism from control subjects with 83% sensitivity and 75% specificity for a total accuracy of 79% (P = 1.1 × 10(-7)). In subjects 10 cm). Brain regions showing greatest differences included regions of the default mode network, superior parietal lobule, fusiform gyrus and anterior insula. Overall, classification accuracy was better for younger subjects, with differences between autism and control subjects diminishing after 19 years of age. Classification scores of unaffected siblings of individuals with autism were more similar to those of the control subjects than to those of the subjects with autism. These findings indicate feasibility of a functional connectivity magnetic resonance imaging diagnostic assay for autism.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                06 February 2018
                2018
                : 9
                : 18
                Affiliations
                College of Mathematics and Computer Science, Hunan Normal University , Changsha, China
                Author notes

                Edited by: Quanxin Zhu, Nanjing Normal University, China

                Reviewed by: Qiang Zheng, Yantai University, China; Na Li, Central South University, China

                *Correspondence: Xia-an Bi bixiaan@ 123456hnu.edu.cn

                This article was submitted to Systems Biology, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2018.00018
                5808191
                29467790
                52084571-acfe-4a76-83f7-64615c1dee10
                Copyright © 2018 Bi, Wang, Shu, Sun and Xu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 November 2017
                : 15 January 2018
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 77, Pages: 10, Words: 7458
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 61502167
                Categories
                Genetics
                Original Research

                Genetics
                random support vector machine cluster,neuroimaging,autism spectrum disorder,classification,feature selection

                Comments

                Comment on this article