5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Can the Cecal Ligation and Puncture Model Be Repurposed To Better Inform Therapy in Human Sepsis?

      , ,
      Infection and Immunity
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          A recent report by the National Institutes of Health on sepsis research has implied there is a trend to move away from mouse models of sepsis. The most commonly used animal model to study the pathogenesis of human sepsis is cecal ligation and puncture (CLP) in mice. The model has been the mainstay of sepsis research for decades and continues to be considered the gold standard to inform novel pathways of sepsis physiology and its therapeutic direction. As there have been many criticisms of the model, particularly regarding its relevance to human disease, how this model might be repurposed to be more reflective of the human condition begs discussion. In this piece, we compare and contrast the mouse microbiome of the CLP model to the emerging science of the microbiome of human sepsis and discuss the relevance for mice to harbor the specific pathogens present in the human microbiome during sepsis, as well as an underlying disease process to mimic the characteristics of those patients with undesirable outcomes. How to repurpose this model to incorporate these “human factors” is discussed in detail and suggestions offered.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found

          The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

          Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation

            Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T (Treg) cells expressing transcription factor Foxp3 play a key role in limiting inflammatory responses in the intestine 1 . Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory Th17 cells 2-6 , the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we hypothesized that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We found that a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg cell numbers upon provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells as the observed phenomenon was dependent upon intronic enhancer CNS1, essential for extrathymic, but dispensable for thymic Treg cell differentiation 1, 7 . In addition to butyrate, de novo Treg cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of HDAC inhibition, but not acetate, lacking this activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program.

              Compelling evidence has shown that aggressive resuscitation bundles, adequate source control, appropriate antibiotic therapy, and organ support are cornerstone for the success in the treatment of patients with sepsis. Delay in the initiation of appropriate antibiotic therapy has been recognized as a risk factor for mortality. To perform a retrospective analysis on the Surviving Sepsis Campaign database to evaluate the relationship between timing of antibiotic administration and mortality. Retrospective analysis of a large dataset collected prospectively for the Surviving Sepsis Campaign. One hundred sixty-five ICUs in Europe, the United States, and South America. A total of 28,150 patients with severe sepsis and septic shock, from January 2005 through February 2010, were evaluated. Antibiotic administration and hospital mortality. A total of 17,990 patients received antibiotics after sepsis identification and were included in the analysis. In-hospital mortality was 29.7% for the cohort as a whole. There was a statically significant increase in the probability of death associated with the number of hours of delay for first antibiotic administration. Hospital mortality adjusted for severity (sepsis severity score), ICU admission source (emergency department, ward, vs ICU), and geographic region increased steadily after 1 hour of time to antibiotic administration. Results were similar in patients with severe sepsis and septic shock, regardless of the number of organ failure. The results of the analysis of this large population of patients with severe sepsis and septic shock demonstrate that delay in first antibiotic administration was associated with increased in-hospital mortality. In addition, there was a linear increase in the risk of mortality for each hour delay in antibiotic administration. These results underscore the importance of early identification and treatment of septic patients in the hospital setting.
                Bookmark

                Author and article information

                Journal
                Infection and Immunity
                Infect Immun
                American Society for Microbiology
                0019-9567
                1098-5522
                August 19 2020
                August 19 2020
                June 22 2020
                : 88
                : 9
                Article
                10.1128/IAI.00942-19
                7440761
                32571986
                522f8815-5683-4ad6-803f-20f4d13278df
                © 2020
                History

                Comments

                Comment on this article