11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FEZF1 is an Independent Predictive Factor for Recurrence and Promotes Cell Proliferation and Migration in Cervical Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Fez family zinc finger protein 1 (FEZF1), a critical transcription factor in nervous system development, has been implicated in cancer progression recently. However, its clinical significance remains unknown. By analyzing gene expression data of eight most common cancer types from The Cancer Genome Atlas (TCGA), we found that FEZF1 prominently associated with the recurrence-free survival of cervical cancer patients ( P<0.001) and was an independent diagnostic factor for cervical cancer recurrence ( P=0.002). Moreover, FEZF1 expression was significantly higher in the tumor samples from cervical cancer patients with relapse in TCGA( P=0.015). By RNA interference, we knocked down FEZF1 and found that cell proliferation, growth and migration were significantly decreased in C33A and SiHa cells. Meanwhile, FEZF1 knockdown also attenuated the growth of C33A cells in nude mice. In contrast, expression of FEZF1 promoted cell proliferation, growth and migration in HeLa cells. Using chromatin immunoprecipitation (ChIP) assay, we revealed that FEZF1 could bind to multiple key genes in the Wnt signaling pathway in HeLa cells. Furthermore, analysis of the levels of β-catenin protein, the core component of the Wnt pathway, and downstream effector genes of the pathway showed that FEZF1 could activate the Wnt pathway. Together, these results suggest that FEZF1 promotes cell proliferation and migration possibly by acting as a transcriptional activator of the Wnt signaling pathway in cervical cancer, and also provide a valuable molecular predictive marker for cervical cancer recurrence.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Pathview: an R/Bioconductor package for pathway-based data integration and visualization

          Summary: Pathview is a novel tool set for pathway-based data integration and visualization. It maps and renders user data on relevant pathway graphs. Users only need to supply their data and specify the target pathway. Pathview automatically downloads the pathway graph data, parses the data file, maps and integrates user data onto the pathway and renders pathway graphs with the mapped data. Although built as a stand-alone program, Pathview may seamlessly integrate with pathway and functional analysis tools for large-scale and fully automated analysis pipelines. Availability: The package is freely available under the GPLv3 license through Bioconductor and R-Forge. It is available at http://bioconductor.org/packages/release/bioc/html/pathview.html and at http://Pathview.r-forge.r-project.org/. Contact: luo_weijun@yahoo.com Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wnt signalling and its impact on development and cancer.

            The Wnt signalling pathway is an ancient system that has been highly conserved during evolution. It has a crucial role in the embryonic development of all animal species, in the regeneration of tissues in adult organisms and in many other processes. Mutations or deregulated expression of components of the Wnt pathway can induce disease, most importantly cancer. The first gene to be identified that encodes a Wnt signalling component, Int1 (integration 1), was molecularly characterized from mouse tumour cells 25 years ago. In parallel, the homologous gene Wingless in Drosophila melanogaster, which produces developmental defects in embryos, was characterized. Since then, further components of the Wnt pathway have been identified and their epistatic relationships have been defined. This article is a Timeline of crucial discoveries about the components and functions of this essential pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wnt signaling in cancer.

              Aberrant regulation of the Wnt signaling pathway is a prevalent theme in cancer biology. From the earliest observation that Wnt overexpression could lead to malignant transformation of mouse mammary tissue to the most recent genetic discoveries gleaned from tumor genome sequencing, the Wnt pathway continues to evolve as a central mechanism in cancer biology. This article summarizes the evidence supporting a role for Wnt signaling in human cancer. This includes a review of the genetic mutations affecting Wnt pathway components, as well as some of epigenetic mechanisms that alter expression of genes relevant to Wnt. I also highlight some research on the cooperativity of Wnt with other signaling pathways in cancer. Finally, some emphasis is placed on laboratory research that provides a proof of concept for the therapeutic inhibition of Wnt signaling in cancer.
                Bookmark

                Author and article information

                Journal
                J Cancer
                J Cancer
                jca
                Journal of Cancer
                Ivyspring International Publisher (Sydney )
                1837-9664
                2018
                10 October 2018
                : 9
                : 21
                : 3929-3938
                Affiliations
                Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R.China
                Author notes
                ✉ Corresponding author: Xu Song, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Wuhou District, Chengdu 610065, Sichuan, China. Tel: +86-28-8541 0032; Fax: +86-28-8541 8926; E-mail: xusong@ 123456scu.edu.cn

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                jcav09p3929
                10.7150/jca.26073
                6218770
                30410597
                5230c598-1a04-40b7-ad1b-317b76fd254e
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 15 March 2018
                : 6 August 2018
                Categories
                Research Paper

                Oncology & Radiotherapy
                fezf1,cervical cancer,recurrence,diagnostic factor,wnt signaling pathway
                Oncology & Radiotherapy
                fezf1, cervical cancer, recurrence, diagnostic factor, wnt signaling pathway

                Comments

                Comment on this article