56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Notch signaling in serous ovarian cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ovarian cancer is the most lethal of all gynecologic malignancies because women commonly present with advanced stage disease and develop chemotherapy refractory tumors. While cytoreductive surgery followed by platinum based chemotherapy are initially effective, ovarian tumors have a high propensity to recur highlighting the distinct need for novel therapeutics to improve outcomes for affected women. The Notch signaling pathway plays an established role in embryologic development and deregulation of this signaling cascade has been linked to many cancers. Recent genomic profiling of serous ovarian carcinoma revealed that Notch pathway alterations are among the most prevalent detected genomic changes. A growing body of scientific literature has confirmed heightened Notch signaling activity in ovarian carcinoma, and has utilized in vitro and in vivo models to suggest that targeting this pathway with gamma secretase inhibitors (GSIs) leads to anti-tumor effects. While it is currently unknown if Notch pathway inhibition can offer clinical benefit to women with ovarian cancer, several GSIs are currently in phase I and II trials across many disease sites including ovary. This review will provide background on Notch pathway function and will focus on the pre-clinical literature that links altered Notch signaling to ovarian cancer progression.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          The canonical Notch signaling pathway: unfolding the activation mechanism.

          Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, the misregulation or loss of Notch signaling underlies a wide range of human disorders, from developmental syndromes to adult-onset diseases and cancer. Notch signaling is remarkably robust in most tissues even though each Notch molecule is irreversibly activated by proteolysis and signals only once without amplification by secondary messenger cascades. In this Review, we highlight recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch signalling in solid tumours: a little bit of everything but not all the time.

            The discovery of Notch in Drosophila melanogaster nearly a century ago opened the door to an ever-widening understanding of cellular processes that are controlled or influenced by Notch signalling. As would be expected with such a pleiotropic pathway, the deregulation of Notch signalling leads to several pathological conditions, including cancer. A role for Notch is well established in haematological malignancies, and more recent studies have provided evidence for the importance of Notch activity in solid tumours. As it is thought to act as an oncogene in some cancers but as a tumour suppressor in others, the role of Notch in solid tumours seems to be highly context dependent.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HES and HERP families: multiple effectors of the Notch signaling pathway.

              Notch signaling dictates cell fate and critically influences cell proliferation, differentiation, and apoptosis in metazoans. Multiple factors at each step-ligands, receptors, signal transducers and effectors-play critical roles in executing the pleiotropic effects of Notch signaling. Ligand-binding results in proteolytic cleavage of Notch receptors to release the signal-transducing Notch intracellular domain (NICD). NICD migrates into the nucleus and associates with the nuclear proteins of the RBP-Jkappa family (also known as CSL or CBF1/Su(H)/Lag-1). RBP-Jkappa, when complexed with NICD, acts as a transcriptional activator, and the RBP-Jkappa-NICD complex activates expression of primary target genes of Notch signaling such as the HES and enhancer of split [E(spl)] families. HES/E(spl) is a basic helix-loop-helix (bHLH) type of transcriptional repressor, and suppresses expression of downstream target genes such as tissue-specific transcriptional activators. Thus, HES/E(spl) directly affects cell fate decisions as a primary Notch effector. HES/E(spl) had been the only known effector of Notch signaling until a recent discovery of a related but distinct bHLH protein family, termed HERP (HES-related repressor protein, also called Hey/Hesr/HRT/CHF/gridlock). In this review, we summarize the recent data supporting the idea of HERP being a new Notch effector, and provide an overview of the similarities and differences between HES and HERP in their biochemical properties as well as their tissue distribution. One key observation derived from identification of HERP is that HES and HERP form a heterodimer and cooperate for transcriptional repression. The identification of the HERP family as a Notch effector that cooperates with HES/E(spl) family has opened a new avenue to our understanding of the Notch signaling pathway. Copyright 2003 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                groeneweg.jolijn@gmail.com
                rfoster1@MGH.Harvard.edu
                wgrowdon@MGH.Harvard.edu
                R.Verheijen@umcutrecht.nl
                brueda@MGH.Harvard.edu
                Journal
                J Ovarian Res
                J Ovarian Res
                Journal of Ovarian Research
                BioMed Central (London )
                1757-2215
                4 November 2014
                4 November 2014
                2014
                : 7
                : 1
                : 95
                Affiliations
                [ ]Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA USA
                [ ]Harvard Medical School, Boston, MA USA
                [ ]Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA USA
                [ ]Division of Woman and Baby, Department of Gynecologic Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
                Article
                95
                10.1186/s13048-014-0095-1
                4228063
                25366565
                523de70c-010e-4ea8-8098-e742c7dbbb46
                © Groeneweg et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 August 2014
                : 3 October 2014
                Categories
                Review
                Custom metadata
                © The Author(s) 2014

                Obstetrics & Gynecology
                ovarian serous carcinoma,notch,gamma secretase inhibitor,patient derived xenograft models

                Comments

                Comment on this article