9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mitochondrial Morphofunction in Mammalian Cells

      1 , 1 , 1 , 1
      Antioxidants & Redox Signaling
      Mary Ann Liebert Inc

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d4484042e169"> <b> <i>Significance:</i> </b> In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. </p><p id="d4484042e177"> <b> <i>Recent Advances:</i> </b> Within cells, mitochondria are motile and display temporal changes in internal and external structure (“mitochondrial dynamics”). During the last decade, substantial empirical and <i>in silico</i> evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and <i>vice versa</i>. </p><p id="d4484042e191"> <b> <i>Critical Issues:</i> </b> However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function (“morphofunction”) is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. </p><p id="d4484042e199"> <b> <i>Future Directions:</i> </b> In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules. </p>

          Related collections

          Most cited references283

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial membrane potential.

          The mitochondrial membrane potential (ΔΨm) generated by proton pumps (Complexes I, III and IV) is an essential component in the process of energy storage during oxidative phosphorylation. Together with the proton gradient (ΔpH), ΔΨm forms the transmembrane potential of hydrogen ions which is harnessed to make ATP. The levels of ΔΨm and ATP in the cell are kept relatively stable although there are limited fluctuations of both these factors that can occur reflecting normal physiological activity. However, sustained changes in both factors may be deleterious. A long-lasting drop or rise of ΔΨm vs normal levels may induce unwanted loss of cell viability and be a cause of various pathologies. Among other factors, ΔΨm plays a key role in mitochondrial homeostasis through selective elimination of dysfunctional mitochondria. It is also a driving force for transport of ions (other than H+) and proteins which are necessary for healthy mitochondrial functioning. We propose additional potential mechanisms for which ΔΨm is essential for maintenance of cellular health and viability and provide recommendations how to accurately measure ΔΨm in a cell and discuss potential sources of artifacts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondria supply membranes for autophagosome biogenesis during starvation.

            Starvation-induced autophagosomes engulf cytosol and/or organelles and deliver them to lysosomes for degradation, thereby resupplying depleted nutrients. Despite advances in understanding the molecular basis of this process, the membrane origin of autophagosomes remains unclear. Here, we demonstrate that, in starved cells, the outer membrane of mitochondria participates in autophagosome biogenesis. The early autophagosomal marker, Atg5, transiently localizes to punctae on mitochondria, followed by the late autophagosomal marker, LC3. The tail-anchor of an outer mitochondrial membrane protein also labels autophagosomes and is sufficient to deliver another outer mitochondrial membrane protein, Fis1, to autophagosomes. The fluorescent lipid NBD-PS (converted to NBD-phosphotidylethanolamine in mitochondria) transfers from mitochondria to autophagosomes. Photobleaching reveals membranes of mitochondria and autophagosomes are transiently shared. Disruption of mitochondria/ER connections by mitofusin2 depletion dramatically impairs starvation-induced autophagy. Mitochondria thus play a central role in starvation-induced autophagy, contributing membrane to autophagosomes. Copyright (c) 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial energetics in the kidney

              Mitochondria provide the kidney with energy to remove waste from the blood and regulate fluid and electrolyte balance. This Review discusses how mitochondrial homeostasis is maintained, the changes in mitochondrial energetics that occur in acute kidney injury and diabetic nephropathy, and how targeting mitochondrial energetics might aid the treatment of renal disease.
                Bookmark

                Author and article information

                Journal
                Antioxidants & Redox Signaling
                Antioxidants & Redox Signaling
                Mary Ann Liebert Inc
                1523-0864
                1557-7716
                June 20 2019
                June 20 2019
                : 30
                : 18
                : 2066-2109
                Affiliations
                [1 ]Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
                Article
                10.1089/ars.2018.7534
                6529879
                30266077
                5267809c-447b-4626-aa38-8fd8780e165b
                © 2019

                https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121/

                History

                Comments

                Comment on this article