1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Benefits of the Clean Heating Plan on Air Quality in the Beijing–Tianjin–Hebei Region

      , , , , , , ,
      Atmosphere
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coal-to-gas/electricity conversion (hereafter referred to as CTGC/CTEC) as the core project of a clean heating campaign has been widely adopted to replace and reduce the combustion of residential coal in Northern China since 2017. In this study, simulations based on the WRF-Chem model were carried out to quantitatively assess the impacts of the CTGC/CTEC project on air quality in the Beijing–Tianjin–Hebei (BTH) region. It was found that the CTGC/CTEC projects exert a remarkable effect on improving the air quality in the BTH region, especially in the plain area. The maximum decrease in the concentrations of PM2.5 and PM10 averaged during January can reach 30 and 40 μg/m3, respectively. In addition, the spillover effects due to CTGC/CTEC projects are rather small; that is, the local reduced emissions tend to provide more benefit to the local air quality but less for its surrounding regions. It is also noteworthy that the effects due to meteorological condition changes are comparable with, or even larger, than those due to CTGC/CTEC projects, which are not spatially uniform for the BTH region among various cities. Overall, these results not only demonstrate the effectiveness of CTGC/CTEC projects on air-quality improvement in the BTH region, but also indicate the importance of meteorological conditions in modulating the local air quality. To sustain better air quality in the future, residential coal replacement, all over China, can be further promoted. In addition, continued policy refinement can be essential for the nationwide implementation of clean heating projects.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Drivers of improved PM 2.5 air quality in China from 2013 to 2017

          Significance The high frequency of haze pollution in China has attracted broad attention and triggered, in 2013, the promulgation of the toughest-ever clean air policy in the country. In this study, we quantified the air quality and health benefits from specific clean air actions by combining a chemical transport model with a detailed emission inventory. As tremendous efforts and resources are needed for mitigating emissions from various sources, evaluation of the effectiveness of these measures can provide crucial information for developing air quality policies in China as well as in other developing and highly polluting countries. Based on measure-specific analysis, our results bear out several important implications for designing future clean air policies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects.

              High concentrations of ozone in urban and industrial regions worldwide have long been a major air quality issue. With the rapid increase in fossil fuel consumption in China over the past three decades, the emission of chemical precursors to ozone-nitrogen oxides and volatile organic compounds-has increased sharply, surpassing that of North America and Europe and raising concerns about worsening ozone pollution in China. Historically, research and control have prioritized acid rain, particulate matter, and more recently fine particulate matter (PM2.5). In contrast, less is known about ozone pollution, partly due to a lack of monitoring of atmospheric ozone and its precursors until recently. This review summarizes the main findings from published papers on the characteristics and sources and processes of ozone and ozone precursors in the boundary layer of urban and rural areas of China, including concentration levels, seasonal variation, meteorology conducive to photochemistry and pollution transport, key production and loss processes, ozone dependence on nitrogen oxides and volatile organic compounds, and the effects of ozone on crops and human health. Ozone concentrations exceeding the ambient air quality standard by 100-200% have been observed in China's major urban centers such as Jing-Jin-Ji, the Yangtze River delta, and the Pearl River delta, and limited studies suggest harmful effect of ozone on human health and agricultural corps; key chemical precursors and meteorological conditions conductive to ozone pollution have been investigated, and inter-city/region transport of ozone is significant. Several recommendations are given for future research and policy development on ground-level ozone.
                Bookmark

                Author and article information

                Contributors
                Journal
                ATMOCZ
                Atmosphere
                Atmosphere
                MDPI AG
                2073-4433
                April 2022
                March 30 2022
                : 13
                : 4
                : 555
                Article
                10.3390/atmos13040555
                52844b2b-cf69-44fd-9f12-70940c4e096d
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article