0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deciphering the Forebrain Disorder in a Chicken Model of Cerebral Hernia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cerebral hernia in crested chicken has been characterized as the protrusion of cerebral hemispheres into the unsealed skull for hundreds of years, since Charles Darwin. The development of deformed forebrain (telencephalon) of cerebral hernia remains largely unknown. Here, the unsealed frontal skull combined with misplaced sphenoid bone was observed and potentially associated with brain protuberance. The shifted pallidum, elongated hippocampus, expanded mesopallium and nidopallium, and reduced hyperpallium were observed in seven regions of the malformed telencephalon. The neurons were detected with nuclear pyknosis and decreased density. Astrocytes showed uneven distribution and disordered protuberances in hyperpallium and hippocampus. Transcriptome analyses of chicken telencephalon (cerebral hernia vs. control) revealed 547 differentially expressed genes (DEGs), mainly related to nervous system development, and immune system processes, including astrocyte marker gene GFAP, and neuron and astrocyte developmental gene S100A6. The upregulation of GFAP and S100A6 genes in abnormal telencephalon was correlated with reduced DNA methylation levels in the promoter regions. The morphological, cellular, and molecular variations in the shape, regional specification, and cellular states of malformed telencephalon potentially participate in brain plasticity and previously reported behavior changes. Chickens with cerebral hernia might be an interesting and valuable disease model to further explore the recognition, diagnosis, and therapy of cerebral hernia development of crested chickens and other species.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype

          Rapid advances in next-generation sequencing technologies have dramatically changed our ability to perform genome-scale analyses. The human reference genome used for most genomic analyses represents only a small number of individuals, limiting its usefulness for genotyping. We designed a novel method, HISAT2, for representing and searching an expanded model of the human reference genome, in which a large catalogue of known genomic variants and haplotypes is incorporated into the data structure used for searching and alignment. This strategy for representing a population of genomes, along with a fast and memory-efficient search algorithm, enables more detailed and accurate variant analyses than previous methods. We demonstrate two initial applications of HISAT2: HLA typing, a critical need in human organ transplantation, and DNA fingerprinting, widely used in forensics. These applications are part of HISAT-genotype, with performance not only surpassing earlier computational methods, but matching or exceeding the accuracy of laboratory-based assays.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The blood-brain barrier.

            Blood vessels are critical to deliver oxygen and nutrients to all of the tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier, which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and also protects the neural tissue from toxins and pathogens, and alterations of these barrier properties are an important component of pathology and progression of different neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the endothelial cells (ECs) that form the walls of the blood vessels, and these properties are regulated by interactions with different vascular, immune, and neural cells. Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glia as architects of central nervous system formation and function

              Glia constitute roughly half of the cells of the central nervous system (CNS) but were long-considered to be static bystanders to its formation and function. Here we provide an overview of how the diverse and dynamic functions of glial cells orchestrate essentially all aspects of nervous system formation and function. Radial glia, astrocytes, oligodendrocyte progenitor cells, oligodendrocytes, and microglia each influence nervous system development, from neuronal birth, migration, axon specification, and growth through circuit assembly and synaptogenesis. As neural circuits mature, distinct glia fulfill key roles in synaptic communication, plasticity, homeostasis, and network-level activity through dynamic monitoring and alteration of CNS structure and function. Continued elucidation of glial cell biology, and the dynamic interactions of neurons and glia, will enrich our understanding of nervous system formation, health, and function.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                27 August 2020
                September 2020
                : 11
                : 9
                : 1008
                Affiliations
                Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China; yingfengtao@ 123456webmail.hzau.edu.cn (Y.T.); xiaoliuzhou@ 123456webmail.hzau.edu.cn (X.Z.); chen.li@ 123456webmail.hzau.edu.cn (X.Z.); lishijun@ 123456mail.hzau.edu.cn (S.L.)
                Author notes
                Article
                genes-11-01008
                10.3390/genes11091008
                7564858
                32867218
                528f8b21-886e-4ea1-8686-5b90e1583f5c
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 June 2020
                : 20 August 2020
                Categories
                Article

                astrocyte,brain,cerebral hernia,chicken,dna methylation,neuron,sphenoid bone,telencephalon

                Comments

                Comment on this article