12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Epidemiology of the classical myeloproliferative neoplasms: The four corners of an expansive and complex map

      , , , , ,
      Blood Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4727037e123">The classical myeloproliferative neoplasms (MPNs), specifically chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF), represent clonal myeloid disorders whose pathogenesis is driven by well-defined molecular abnormalities. In this comprehensive review, we summarize the epidemiological literature and present our own analysis of the most recent the Surveillance, Epidemiology, and End Results (SEER) program data through 2016. Older age and male gender are known risk factors for MPNs, but the potential etiological role of other variables is less established. The incidences of CML, PV, and ET are relatively similar at 1.0-2.0 per 100,000 person-years in the United States, while PMF is rarer with an incidence of 0.3 per 100,000 person-years. The availability of tyrosine kinase inhibitor therapy has dramatically improved CML patient outcomes and yield a life expectancy similar to the general population. Patients with PV or ET have better survival than PMF patients. </p>

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found

          The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.

          The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues was last updated in 2008. Since then, there have been numerous advances in the identification of unique biomarkers associated with some myeloid neoplasms and acute leukemias, largely derived from gene expression analysis and next-generation sequencing that can significantly improve the diagnostic criteria as well as the prognostic relevance of entities currently included in the WHO classification and that also suggest new entities that should be added. Therefore, there is a clear need for a revision to the current classification. The revisions to the categories of myeloid neoplasms and acute leukemia will be published in a monograph in 2016 and reflect a consensus of opinion of hematopathologists, hematologists, oncologists, and geneticists. The 2016 edition represents a revision of the prior classification rather than an entirely new classification and attempts to incorporate new clinical, prognostic, morphologic, immunophenotypic, and genetic data that have emerged since the last edition. The major changes in the classification and their rationale are presented here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease

            Background Clonal hematopoiesis of indeterminate potential (CHIP), defined by the presence of an expanded somatic blood cell clone in those without other hematologic abnormalities, is common in older individuals and associates with an increased risk of developing hematologic cancer. We previously found preliminary evidence for an association of CHIP with human atherosclerotic cardiovascular disease, but the nature of this association was unclear. Methods We used whole exome sequencing to detect the presence of CHIP in peripheral blood cells and associated this with coronary heart disease in four case-control studies together comprising 4,794 cases and 3,537 controls. To assess causality, we perturbed the function of Tet2, the second most commonly mutated gene linked to clonal hematopoiesis, in the hematopoietic cells of atherosclerosis-prone mice. Results In nested case-control analyses from two prospective cohorts, carriers of CHIP had a 1.9-fold (95% confidence interval 1.4–2.7) increased risk of coronary heart disease compared to non-carriers. In two retrospective case-control cohorts for early-onset myocardial infarction, those with CHIP had a 4.0-fold greater risk (95% confidence interval 2.4–6.7) of having myocardial infarction. Mutations in DNMT3A, TET2, ASXL1, and JAK2 were each individually associated with coronary heart disease. Those with clonal hematopoiesis also had increased coronary artery calcification, a marker of coronary atherosclerosis burden. Hyperlipidemic mice engrafted with Tet2−/− or Tet2+/− bone marrow developed larger atherosclerotic lesions in the aortic root and aorta than mice receiving control marrow. Analyses of Tet2−/− macrophages demonstrated elevated expression of several chemokine and cytokine genes that contribute to atherosclerosis. Conclusions Clonal hematopoiesis robustly associates with coronary heart disease in humans and causes accelerated atherosclerosis in mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adapting to obesity with adipose tissue inflammation

              Adipose tissue inflammation is an adaptive response to overnutrition in the early stages of obesity, but later becomes maladaptive. Here, Reilly and Saltiel review the cellular and molecular mechanisms of obesity-induced inflammation in adipose tissue and discuss potential therapeutic approaches.
                Bookmark

                Author and article information

                Journal
                Blood Reviews
                Blood Reviews
                Elsevier BV
                0268960X
                July 2020
                July 2020
                : 42
                : 100706
                Article
                10.1016/j.blre.2020.100706
                32517877
                53080fa8-ad75-491c-ab18-5c9906736f91
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article