10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo.

          Conversion of a solid primordium to a hollow tube of cells is a morphogenetic process used frequently during vertebrate embryogenesis. In the early mouse embryo, this process of cavitation transforms the solid embryonic ectoderm into a columnar epithelium surrounding a cavity. Using both established cell lines and normal embryos, we provide evidence that cavitation in the early mouse embryo is the result of the interplay of two signals, one from an outer layer of endoderm cells that acts over short distances to create a cavity by inducing apoptosis of the inner ectodermal cells, and the other a rescue signal mediated by contact with the basement membrane that is required for the survival of the columnar cells that line the cavity. This simple model provides a paradigm for investigating tube morphogenesis in diverse developmental settings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional interactions between Stat5 and the glucocorticoid receptor.

            Signal transduction pathways enable extracellular signals to activate latent transcription factors in the cytoplasm of cells. Dimerization, nuclear localization and binding to specific DNA sequences result in the induction of gene transcription by these proteins. These events are necessary for the functioning of the JAK/STAT pathway and of the glucocorticoid-receptor pathway. In the former, the protein Stat5, which is a member of a family of signal transducers and activators of transcription, is activated by cytokines, hormones and growth factors. These polypeptide ligands bind at the outside of the cell to specific transmembrane receptors and activate intracellular Janus protein tyrosine kinases (JAKs) to tyrosine-phosphorylate STAT proteins; interaction with the SH2 domain of the dimerization partner then confers the ability to bind to DNA at the STAT-response element and induce transcription. In the glucocorticoid-receptor pathway, the receptor interacts with its steroid hormone ligand in the cytoplasm, undergoes an allosteric change that enables the hormone receptor complex to bind to specific DNA-response elements (glucocorticoid response elements, or GRE) and modulate transcription. Although these pathways appear to be unrelated, we show here that the glucocorticoid receptor can act as a transcriptional co-activator for Stat5 and enhance Stat5-dependent transcription. Stat5 forms a complex with the glucocorticoid receptor which binds to DNA independently of the GRE. This complex formation between Stat5 and the glucocorticoid receptor diminishes the glucocorticoid response of a GRE-containing promoter.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition.

              Oxytocin is a nonapeptide hormone that participates in the regulation of parturition and lactation. It has also been implicated in various behaviors, such as mating and maternal, and memory. To investigate whether or not oxytocin (OT) is essential for any of these functions, we eliminated, by homologous recombination, most of the first intron and the last two exons of the OT gene in mice. Those exons encode the neurophysin portion of the oxytocin preprohormone which is hypothesized to help in the packaging and transport of OT. The homozygous mutant mice have no detectable neurophysin or processed oxytocin in the paraventricular nucleus, supraoptic nucleus or posterior pituitary. Interestingly, homozygous mutant males and females are fertile and the homozygous mutant females are able to deliver their litters. However, the pups do not successfully suckle and die within 24 h without milk in their stomachs. OT injection into the dams restores the milk injection in response to suckling. These results indicate an absolute requirement for oxytocin for successful milk injection, but not for mating, parturition and milk production, in mice.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 01 1997
                April 01 1997
                : 94
                : 7
                : 3425-3430
                Article
                10.1073/pnas.94.7.3425
                9096410
                53098748-485e-4879-a447-e1cbacdfa153
                © 1997
                History

                Comments

                Comment on this article