7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accurate Label-Free Quantification by directLFQ to Compare Unlimited Numbers of Proteomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advances in mass spectrometry–based proteomics enable the acquisition of increasingly large datasets within relatively short times, which exposes bottlenecks in the bioinformatics pipeline. Although peptide identification is already scalable, most label-free quantification (LFQ) algorithms scale quadratic or cubic with the sample numbers, which may even preclude the analysis of large-scale data. Here we introduce directLFQ, a ratio-based approach for sample normalization and the calculation of protein intensities. It estimates quantities via aligning samples and ion traces by shifting them on top of each other in logarithmic space. Importantly, directLFQ scales linearly with the number of samples, allowing analyses of large studies to finish in minutes instead of days or months. We quantify 10,000 proteomes in 10 min and 100,000 proteomes in less than 2 h, a 1000-fold faster than some implementations of the popular LFQ algorithm MaxLFQ. In-depth characterization of directLFQ reveals excellent normalization properties and benchmark results, comparing favorably to MaxLFQ for both data-dependent acquisition and data-independent acquisition. In addition, directLFQ provides normalized peptide intensity estimates for peptide-level comparisons. It is an important part of an overall quantitative proteomic pipeline that also needs to include high sensitive statistical analysis leading to proteoform resolution. Available as an open-source Python package and a graphical user interface with a one-click installer, it can be used in the AlphaPept ecosystem as well as downstream of most common computational proteomics pipelines.

          Graphical Abstract

          Highlights

          • Novel algorithmic concept for label-free quantification.

          • Linear dependence of execution time on number of samples.

          • Quantifies up to 100,000 samples in less than 2 h.

          • Higher accuracy and robustness than state-of-the-art MaxLFQ.

          In Brief

          Quantification of protein intensities is a crucial and challenging task in mass spectrometry–based proteomics. With directLFQ, we introduce an efficient algorithm that massively decreases execution time for large sample numbers while maintaining high accuracy. As it scales linearly with the number of samples, directLFQ unlocks high-quality quantification for arbitrarily large sample sizes. This is especially important for clinical proteomics as well as the rising field of single cell proteomics.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.

          Efficient analysis of very large amounts of raw data for peptide identification and protein quantification is a principal challenge in mass spectrometry (MS)-based proteomics. Here we describe MaxQuant, an integrated suite of algorithms specifically developed for high-resolution, quantitative MS data. Using correlation analysis and graph theory, MaxQuant detects peaks, isotope clusters and stable amino acid isotope-labeled (SILAC) peptide pairs as three-dimensional objects in m/z, elution time and signal intensity space. By integrating multiple mass measurements and correcting for linear and nonlinear mass offsets, we achieve mass accuracy in the p.p.b. range, a sixfold increase over standard techniques. We increase the proportion of identified fragmentation spectra to 73% for SILAC peptide pairs via unambiguous assignment of isotope and missed-cleavage state and individual mass precision. MaxQuant automatically quantifies several hundred thousand peptides per SILAC-proteome experiment and allows statistically robust identification and quantification of >4,000 proteins in mammalian cell lysates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences

            The PRoteomics IDEntifications (PRIDE) database ( https://www.ebi.ac.uk/pride/ ) is the world's largest data repository of mass spectrometry-based proteomics data. PRIDE is one of the founding members of the global ProteomeXchange (PX) consortium and an ELIXIR core data resource. In this manuscript, we summarize the developments in PRIDE resources and related tools since the previous update manuscript was published in Nucleic Acids Research in 2019. The number of submitted datasets to PRIDE Archive (the archival component of PRIDE) has reached on average around 500 datasets per month during 2021. In addition to continuous improvements in PRIDE Archive data pipelines and infrastructure, the PRIDE Spectra Archive has been developed to provide direct access to the submitted mass spectra using Universal Spectrum Identifiers. As a key point, the file format MAGE-TAB for proteomics has been developed to enable the improvement of sample metadata annotation. Additionally, the resource PRIDE Peptidome provides access to aggregated peptide/protein evidences across PRIDE Archive. Furthermore, we will describe how PRIDE has increased its efforts to reuse and disseminate high-quality proteomics data into other added-value resources such as UniProt, Ensembl and Expression Atlas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ *

              Protein quantification without isotopic labels has been a long-standing interest in the proteomics field. However, accurate and robust proteome-wide quantification with label-free approaches remains a challenge. We developed a new intensity determination and normalization procedure called MaxLFQ that is fully compatible with any peptide or protein separation prior to LC-MS analysis. Protein abundance profiles are assembled using the maximum possible information from MS signals, given that the presence of quantifiable peptides varies from sample to sample. For a benchmark dataset with two proteomes mixed at known ratios, we accurately detected the mixing ratio over the entire protein expression range, with greater precision for abundant proteins. The significance of individual label-free quantifications was obtained via a t test approach. For a second benchmark dataset, we accurately quantify fold changes over several orders of magnitude, a task that is challenging with label-based methods. MaxLFQ is a generic label-free quantification technology that is readily applicable to many biological questions; it is compatible with standard statistical analysis workflows, and it has been validated in many and diverse biological projects. Our algorithms can handle very large experiments of 500+ samples in a manageable computing time. It is implemented in the freely available MaxQuant computational proteomics platform and works completely seamlessly at the click of a button.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Cell Proteomics
                Mol Cell Proteomics
                Molecular & Cellular Proteomics : MCP
                American Society for Biochemistry and Molecular Biology
                1535-9476
                1535-9484
                22 May 2023
                July 2023
                22 May 2023
                : 22
                : 7
                : 100581
                Affiliations
                [1]Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
                Author notes
                []For correspondence: Matthias Mann mmann@ 123456biochem.mpg.de
                Article
                S1535-9476(23)00092-0 100581
                10.1016/j.mcpro.2023.100581
                10315922
                37225017
                5326e7b2-fc01-4139-bae5-d708dd44263e
                © 2023 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 February 2023
                : 16 May 2023
                Categories
                Technological Innovation and Resources

                Molecular biology
                proteomics,algorithms,quantification,label-free,protein intensity
                Molecular biology
                proteomics, algorithms, quantification, label-free, protein intensity

                Comments

                Comment on this article