4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The circadian rhythm is driven by a master clock within the suprachiasmatic nucleus which regulates the rhythmic secretion of melatonin. Bmal1 coordinates the rhythmic expression of transcriptome and regulates biological activities, involved in cell metabolism and aging. However, the role of Bmal1 in cellular- survival, signaling, its interaction with intracellular proteins, and how melatonin regulates its expression is largely unclear. Here we observed that melatonin increases the expression of Bmal1 and both melatonin and Bmal1 increase cellular survival after oxygen glucose deprivation (OGD) while the inhibition of Bmal1 resulted in the decreased cellular survival without affecting neuroprotective effects of melatonin. By using a planar surface immunoassay for PI3K/AKT signaling pathway components, we revealed that both melatonin and Bmal1 increased phosphorylation of AKT, ERK-1/2, PDK1, mTOR, PTEN, GSK-3αβ, and p70S6K. In contrast, inhibition of Bmal1 resulted in decreased phosphorylation of these proteins, which the effect of melatonin on these signaling molecules was not affected by the absence of Bmal1. Besides, the inhibition of PI3K/AKT decreased Bmal1 expression and the effect of melatonin on Bmal1 after both OGD in vitro and focal cerebral ischemia in vivo. Our data demonstrate that melatonin controls the expression of Bmal1 via PI3K/AKT signaling, and Bmal1 plays critical roles in cellular survival via activation of survival kinases.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock.

          Mice deficient in the circadian transcription factor BMAL1 (brain and muscle ARNT-like protein) have impaired circadian behavior and demonstrate loss of rhythmicity in the expression of target genes. Here we report that Bmal1(-/-) mice have reduced lifespans and display various symptoms of premature aging including sarcopenia, cataracts, less subcutaneous fat, organ shrinkage, and others. The early aging phenotype correlates with increased levels of reactive oxygen species in some tissues of the Bmal1(-/- )animals. These findings, together with data on CLOCK/BMAL1-dependent control of stress responses, may provide a mechanistic explanation for the early onset of age-related pathologies in the absence of BMAL1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation

            In mammals, a central circadian clock, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, tunes the innate circadian physiological rhythms to the ambient 24 h light–dark cycle to invigorate and optimize the internal temporal order. The SCN‐activated, light‐inhibited production of melatonin conveys the message of darkness to the clock and induces night‐state physiological functions, for example, sleep/wake blood pressure and metabolism. Clinically meaningful effects of melatonin treatment have been demonstrated in placebo‐controlled trials in humans, particularly in disorders associated with diminished or misaligned melatonin rhythms, for example, circadian rhythm‐related sleep disorders, jet lag and shift work, insomnia in children with neurodevelopmental disorders, poor (non‐restorative) sleep quality, non‐dipping nocturnal blood pressure (nocturnal hypertension) and Alzheimer's disease (AD). The diminished production of melatonin at the very early stages of AD, the role of melatonin in the restorative value of sleep (perceived sleep quality) and its sleep‐anticipating effects resulting in attenuated activation of certain brain networks are gaining a new perspective as the role of poor sleep quality in the build‐up of β amyloid, particularly in the precuneus, is unravelled. As a result of the recently discovered relationship between circadian clock, sleep and neurodegeneration, new prospects of using melatonin for early intervention, to promote healthy physical and mental ageing, are of prime interest in view of the emerging link to the aetiology of Alzheimer's disease. Linked Articles This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective.

              Melatonin, or 5-methoxy-N-acetyltryptamine, is synthesized and released by the pineal gland and locally in the retina following a circadian rhythm, with low levels during the day and elevated levels at night. Melatonin activates two high-affinity G protein-coupled receptors, termed MT1 and MT2, to exert beneficial actions in sleep and circadian abnormality, mood disorders, learning and memory, neuroprotection, drug abuse, and cancer. Progress in understanding the role of melatonin receptors in the modulation of sleep and circadian rhythms has led to the discovery of a novel class of melatonin agonists for treating insomnia, circadian rhythms, mood disorders, and cancer. This review describes the pharmacological properties of a slow-release melatonin preparation (i.e., Circadin®) and synthetic ligands (i.e., agomelatine, ramelteon, tasimelteon), with emphasis on identifying specific therapeutic effects mediated through MT1 and MT2 receptor activation. Discovery of selective ligands targeting the MT1 or the MT2 melatonin receptors may promote the development of novel and more efficacious therapeutic agents.
                Bookmark

                Author and article information

                Contributors
                kilic44@yahoo.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                13 December 2019
                13 December 2019
                2019
                : 9
                : 19082
                Affiliations
                [1 ]ISNI 0000 0004 0471 9346, GRID grid.411781.a, Regenerative and Restorative Medicine Research Center, , Istanbul Medipol University, ; 34810 Istanbul, Turkey
                [2 ]ISNI 0000 0004 0471 9346, GRID grid.411781.a, Department of Physiology, , School of Medicine, Istanbul Medipol University, ; 34810 Istanbul, Turkey
                [3 ]ISNI 0000 0004 0471 9346, GRID grid.411781.a, Department of Medical Biology, , International School of Medicine, Istanbul Medipol University, ; 34810 Istanbul, Turkey
                [4 ]Department of Medical Biology, School of Medicine, University of Health Sciences, 34668 Istanbul, Turkey
                [5 ]Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
                [6 ]Department of Cell Systems and Anatomy, UT Health San Antonio, 78229 Texas, USA
                Article
                55663
                10.1038/s41598-019-55663-0
                6910929
                31836786
                53478da8-b70a-4b62-aa81-9c1cbef6ed66
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 May 2019
                : 22 November 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100004412, Türkiye Bilimler Akademisi (Turkish Academy of Sciences);
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                cellular neuroscience,circadian mechanisms,stroke
                Uncategorized
                cellular neuroscience, circadian mechanisms, stroke

                Comments

                Comment on this article