2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Hypoxic Preservation Temperature on Endothelial Cells and Kidney Integrity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ischemia-reperfusion (IR) injury is unavoidable during organ transplantation and impacts graft quality. New paradigms are emerging including preservation at higher temperature than “hypothermia” or “cold”: although 4°C remains largely used for kidney preservation, recent studies challenged this choice. We and others hypothesized that a higher preservation temperature, closer to physiological regimen, could improve organ quality. For this purpose, we used an in vitro model of endothelial cells exposed to hypoxia-reoxygenation sequence (mimicking IR) and an ex vivo ischemic pig kidneys static storage model. In vitro, 19°C, 27°C, and 32°C provided protection against injuries versus 4°C, by reducing cell death, mitochondrial dysfunction, leukocyte adhesion, and inflammation. However, ex vivo, the benefits of 19°C or 32°C were limited, showing similar levels of tissue preservation damage. Ex vivo 4°C-preserved kidneys displayed a trend towards reduced damage, including apoptosis. Macrophage infiltration, tubulitis, and necrosis were increased in the 19°C and 32°C versus 4°C preserved kidneys. Thus, despite a trend for an advantage of subnormothermia as preservation temperature, our in vitro and ex vivo models bring different insights in terms of preservation temperature effect. This study suggests that temperature optimization for kidney preservation will require thorough investigation, combining the use of complementary relevant models and the design of elaborated preservation solution and new technologies.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Acute Kidney Injury.

          Acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and healthcare costs. Other than dialysis, no therapeutic interventions reliably improve survival, limit injury, or speed recovery. Despite recognized shortcomings of in vivo animal models, the underlying pathophysiology of AKI and its consequence, chronic kidney disease (CKD), is rich with biological targets. We review recent findings relating to the renal vasculature and cellular stress responses, primarily the intersection of the unfolded protein response, mitochondrial dysfunction, autophagy, and the innate immune response. Maladaptive repair mechanisms that persist following the acute phase promote inflammation and fibrosis in the chronic phase. Here macrophages, growth-arrested tubular epithelial cells, the endothelium, and surrounding pericytes are key players in the progression to chronic disease. Better understanding of these complex interacting pathophysiological mechanisms, their relative importance in humans, and the utility of biomarkers will lead to therapeutic strategies to prevent and treat AKI or impede progression to CKD or end-stage renal disease (ESRD).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial reactive oxygen species in cell death signaling.

            During apoptosis, mitochondrial membrane permeability (MMP) increases and the release into the cytosol of pro-apoptotic factors (procaspases, caspase activators and caspase-independent factors such as apoptosis-inducing factor (AIF)) leads to the apoptotic phenotype. Apart from this pivotal role of mitochondria during the execution phase of apoptosis (documented in other reviews of this issue), it appears that reactive oxygen species (ROS) produced by the mitochondria can be involved in cell death. These toxic compounds are normally detoxified by the cells, failing which oxidative stress occurs. However, ROS are not only dangerous molecules for the cell, but they also display a physiological role, as mediators in signal transduction pathways. ROS participate in early and late steps of the regulation of apoptosis, according to different possible molecular mechanisms. In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and Bcl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state. Furthermore, the fact that active forms of cell death in yeast and plants also involve ROS suggests the existence of an ancestral redox-sensitive death signaling pathway that has been independent of caspases and Bcl-2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Renal transplantation after ex vivo normothermic perfusion: the first clinical study.

              Ex vivo normothermic perfusion (EVNP) is a novel method of preservation that restores circulation and allows an organ to regain function prior to transplantation. The aim of this study was to assess the effects of EVNP in kidneys from marginal donors. Eighteen kidneys from extended criteria donors (ECD) underwent a period of EVNP immediately before transplantation. Kidneys were perfused with a plasma free red-cell based solution at a mean temperature of 34.6°C. The outcome of these kidneys was compared to a control group of 47 ECD kidneys that underwent static cold storage (CS). The mean donor age was 61 ± 1 years in the EVNP and 62 ± 6 years in the CS group (p = 0.520). EVNP kidneys were perfused for an average of 63 ± 16 min and all were transplanted successfully. The delayed graft function rate (DGF), defined as the requirement for dialysis within the first 7 days was 1/18 patients (5.6%) in the EVNP group versus 17/47 (36.2%) in the CS group (p = 0.014). There was no difference in graft or patient survival at 12 months (p = 0.510, 1.000). This first series of EVNP in renal transplantation demonstrates that this technique is both feasible and safe. Our preliminary data suggests that EVNP offers promise as a new technique of kidney preservation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2019
                4 June 2019
                : 2019
                : 8572138
                Affiliations
                1INSERM U1082, Poitiers 86000, France
                2CHU Poitiers, Service de Biochimie, Poitiers 86000, France
                3Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers 86000, France
                4IBiSA Plateforme “Plate-Forme Modélisation Préclinique, Innovation Chirurgicale et Technologique (MOPICT)”, Domaine Expérimental du Magneraud, Surgères 17700, France
                5CHU Poitiers, Service de Réanimation Médicale, Poitiers 86000, France
                6CHU Poitiers, Service d'Anatomopathologie, Poitiers 86000, France
                7University Hospital Federation Tours Poitiers Limoges “Survival Optimization in Organ Transplantation”, CHU Poitiers, 86000, France
                Author notes

                Guest Editor: Nicos Kessaris

                Author information
                http://orcid.org/0000-0002-0117-071X
                Article
                10.1155/2019/8572138
                6582897
                31275986
                535366fa-0ea6-439d-8fde-e642404b5d31
                Copyright © 2019 Sébastien Giraud et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 May 2018
                : 28 March 2019
                : 16 May 2019
                Funding
                Funded by: Conseil Régional Poitou-Charentes, Université de Poitiers
                Funded by: CHU de Poitiers
                Funded by: Fondation Transplantation
                Categories
                Research Article

                Comments

                Comment on this article