3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Very-large-scale integrated quantum graph photonics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphs have provided an expressive mathematical tool to model quantum-mechanical devices and systems. In particular, it has been recently discovered that graph theory can be used to describe and design quantum components, devices, setups and systems, based on the two-dimensional lattice of parametric nonlinear optical crystals and linear optical circuits, different to the standard quantum photonic framework. Realizing such graph-theoretical quantum photonic hardware, however, remains extremely challenging experimentally using conventional technologies. Here we demonstrate a graph-theoretical programmable quantum photonic device in very-large-scale integrated nanophotonic circuits. The device monolithically integrates about 2,500 components, constructing a synthetic lattice of nonlinear photon-pair waveguide sources and linear optical waveguide circuits, and it is fabricated on an eight-inch silicon-on-insulator wafer by complementary metal–oxide–semiconductor processes. We reconfigure the quantum device to realize and process complex-weighted graphs with different topologies and to implement different tasks associated with the perfect matching property of graphs. As two non-trivial examples, we show the generation of genuine multipartite multidimensional quantum entanglement with different entanglement structures, and the measurement of probability distributions proportional to the modulus-squared hafnian (permanent) of the graph’s adjacency matrices. This work realizes a prototype of graph-theoretical quantum photonic devices manufactured by very-large-scale integration technologies, featuring arbitrary programmability, high architectural modularity and massive manufacturing scalability.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          The complexity of computing the permanent

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantum computational advantage using photons.

            Quantum computers promise to perform certain tasks that are believed to be intractable to classical computers. Boson sampling is such a task and is considered a strong candidate to demonstrate the quantum computational advantage. We performed Gaussian boson sampling by sending 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and random matrix-the whole optical setup is phase-locked-and sampling the output using 100 high-efficiency single-photon detectors. The obtained samples were validated against plausible hypotheses exploiting thermal states, distinguishable photons, and uniform distribution. The photonic quantum computer, Jiuzhang, generates up to 76 output photon clicks, which yields an output state-space dimension of 1030 and a sampling rate that is faster than using the state-of-the-art simulation strategy and supercomputers by a factor of ~1014.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Integrated photonic quantum technologies

                Bookmark

                Author and article information

                Contributors
                Journal
                Nature Photonics
                Nat. Photon.
                Springer Science and Business Media LLC
                1749-4885
                1749-4893
                April 06 2023
                Article
                10.1038/s41566-023-01187-z
                53958b86-bd7b-4182-85f5-3f0d894b28c0
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article