39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetics, microRNA, and addiction Translated title: Epigenética, micro ARNs y adicciones Translated title: Épigénétique, microARN et addiction

      research-article
      , PhD *
      Dialogues in Clinical Neuroscience
      Les Laboratoires Servier
      addiction, cocaine, nicotine, opiate, amphetamine, MeCP2, BDNF, miR-212

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug addiction is characterized by uncontrolled drug consumption and high rates of relapse to drug taking during periods of attempted abstinence. Addiction is now largely considered a disorder of experience-dependent neuroplasticity, driven by remodeling of synapses in reward and motivation relevant brain circuits in response to a history of prolonged drug intake. Alterations in gene expression play a central role in addiction-relevant neuroplasticity, but the mechanisms by which additive drugs remodel brain motivation circuits remains unclear. MicroRNAs (miRNAs) are a class of noncoding RNA that can regulate the expression of large numbers of protein-coding mRNA transcripts by binding to the 3' untranslated region (3' UTR) of target transcripts and blocking their translation into the encoded protein or triggering their destabilization and degradation. Emerging evidence has implicated miRNAs in regulating addiction-relevant neuroplasticity in the brain, and in controlling the motivational properties of cocaine and other drugs of abuse. Here, the role for miRNAs in regulating basic aspects of neuronal function is reviewed. The involvement of miRNAs in controlling the motivational properties of addictive drugs is also summarized. Finally, mechanisms by which miRNAs exert their actions on drug intake, when known, are considered.

          Translated abstract

          La adicción a drogas se caracteriza por el consumo no controlado de éstas y una alta frecuencia de recaídas de consumo durante los períodos en que se intenta mantener la abstinencia. Actualmente la adicción se considera en gran medida un trastorno de la neuroplasticidad dependiente de la experiencia, que se produce por la remodelación de las sinapsis en importantes circuitos cerebrates de recompensa y motivacíon en respuesta a una prolongada historia de ingesta de drogas. Aunque las alteracíones en la expresión génica juegan un papel central en la neuroplasticidad de las adicciones, los mecanismos a través de los cuales las drogas adictivas remodelan los tircuitos cerebrates de la motivación aun no están aclarados. Los microARNs (miARNs) son un tipo de ARN no codificante que pueden regular la expresión de un gran número de transcriptores de ARNm que codifican proteínas al unirse a la región 3' no transcrita (3' UTR) de los transcriptores bianco y bloquean su transcripción a la proteina codificada o gatillan su desestabilización y degradación. Existe una evidencia creciente que ha vinculado a los miARNs con la regulación de la neuroplasticidad de las adicciones en el cerebro, y con el control de las propiedades de motivación de la cocaína y otras drogas de abuso. En este artículo se revisa el papel de los miARNs en los aspectos básicos de la regulación de la función neuronal. También se resume la participación de los miARNs en el control de las propiedades motivacionales de las drogas adictivas y se revisan los mecanismos que se conocen a través de los cuales los miARNs ejercen sus acciones en la ingesta de drogas.

          Translated abstract

          L'addiction aux drogues se caractérise par une consommation incontrôlée de drogues et un taux élève de rechute pendant les périodes d'essai d'abstinence. L'addiction est maintenant considérée en grande partie comme un trouble de la neuroplasticité dépendant de l'expérience, dominé par le remodelage des synapses des circuits cérébraux se rapportant à la motivation et à la récompense en réponse à des antécédents de prise prolongée de drogues. Les modifications de l'expression génique jouent un rôle central dans la neuroplasticité liée à l'addiction mais les mécanismes du remodelage des circuits cérébraux de motivation par les drogues addictives sont mal connus. Les microARN (ARNmi), classe d'ARN non codants, régulent l'expression de nombreux brins transcrits d'ARN codant les protéines, en se liant à la région 3' non traduite (3'UTR) des transcrits cibles et en bloquant leur traduction en protéine encodée ou en provoquant leur déstabilisation et leur dégradation. D'après des données récentes, les ARNmi sont impliqués dans la régulation de la neuroplasticité cérébrale liée à l'addiction et dans le contrôle des propriétés de la cocaïne et d'autres drogues illégales liées à la motivation. Le rôle des ARNmi dans la régulation des aspects fondamentaux de la fonction neuronale est analysé ici, et leur participation dans le contrôle des propriétés motivationnelles des drogues addictives est aussi résumée. Enfin, les mécanismes d'action des ARNmi sur la prise de drogue sont examinés, quand ils sont connus.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

          Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.

            Two small temporal RNAs (stRNAs), lin-4 and let-7, control developmental timing in Caenorhabditis elegans. We find that these two regulatory RNAs are members of a large class of 21- to 24-nucleotide noncoding RNAs, called microRNAs (miRNAs). We report on 55 previously unknown miRNAs in C. elegans. The miRNAs have diverse expression patterns during development: a let-7 paralog is temporally coexpressed with let-7; miRNAs encoded in a single genomic cluster are coexpressed during embryogenesis; and still other miRNAs are expressed constitutively throughout development. Potential orthologs of several of these miRNA genes were identified in Drosophila and human genomes. The abundance of these tiny RNAs, their expression patterns, and their evolutionary conservation imply that, as a class, miRNAs have broad regulatory functions in animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing.

              Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing.
                Bookmark

                Author and article information

                Contributors
                Journal
                Dialogues Clin Neurosci
                Dialogues Clin Neurosci
                Dialogues Clin Neurosci
                Dialogues in Clinical Neuroscience
                Les Laboratoires Servier (France )
                1294-8322
                1958-5969
                September 2014
                September 2014
                : 16
                : 3
                : 335-344
                Affiliations
                Laboratory of Behavioral & Molecular Neuroscience, Department of Pharmacology & Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, USA
                Author notes
                Article
                10.31887/DCNS.2014.16.3/pkenny
                4214176
                25364284
                539eb4fa-5193-4211-9343-840f65964845
                Copyright: © 2014 Institut la Conférence Hippocrate - Servier Research Group

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Translational Research

                Neurosciences
                addiction,cocaine,nicotine,opiate,amphetamine,mecp2,bdnf,mir-212
                Neurosciences
                addiction, cocaine, nicotine, opiate, amphetamine, mecp2, bdnf, mir-212

                Comments

                Comment on this article