Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Oppel–Kundt Illusion and Its Relation to Horizontal-Vertical and Oblique Effects

      1
      Perception
      SAGE Publications

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Oppel–Kundt illusion consists in the overestimation of the length of filled versus empty extents. Two experiments explored its relation to the horizontal-vertical illusion, which consists in the overestimation of the length of vertical versus horizontal extents, and to the oblique effect, which consists in poorer discriminative sensitivity for obliquely as opposed to horizontally or vertically oriented stimuli. For Experiment 1, Kundt’s (1863) original stimulus was rotated in steps of 45° full circle around 360°. For Experiment 2, one part of the stimulus remained at a horizontal or vertical orientation, whereas the other part was tilted 45° or 90°. The Oppel–Kundt illusion was at its maximum at a horizontal orientation of the stimulus. The illusion was strongly attenuated with L-type figures when the vertical part was empty, but not enhanced when this part was filled, suggesting that the horizontal-vertical illusion only acts on nontextured extents. There was no oblique effect.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences

          G*Power (Erdfelder, Faul, & Buchner, 1996) was designed as a general stand-alone power analysis program for statistical tests commonly used in social and behavioral research. G*Power 3 is a major extension of, and improvement over, the previous versions. It runs on widely used computer platforms (i.e., Windows XP, Windows Vista, and Mac OS X 10.4) and covers many different statistical tests of the t, F, and chi2 test families. In addition, it includes power analyses for z tests and some exact tests. G*Power 3 provides improved effect size calculators and graphic options, supports both distribution-based and design-based input modes, and offers all types of power analyses in which users might be interested. Like its predecessors, G*Power 3 is free.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The capacity of visual working memory for features and conjunctions.

            Short-term memory storage can be divided into separate subsystems for verbal information and visual information, and recent studies have begun to delineate the neural substrates of these working-memory systems. Although the verbal storage system has been well characterized, the storage capacity of visual working memory has not yet been established for simple, suprathreshold features or for conjunctions of features. Here we demonstrate that it is possible to retain information about only four colours or orientations in visual working memory at one time. However, it is also possible to retain both the colour and the orientation of four objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing sixteen individual features to be retained when distributed across four objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features, which places significant constraints on cognitive and neurobiological models of the temporary storage of visual information.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visual working memory capacity: from psychophysics and neurobiology to individual differences.

              Visual working memory capacity is of great interest because it is strongly correlated with overall cognitive ability, can be understood at the level of neural circuits, and is easily measured. Recent studies have shown that capacity influences tasks ranging from saccade targeting to analogical reasoning. A debate has arisen over whether capacity is constrained by a limited number of discrete representations or by an infinitely divisible resource, but the empirical evidence and neural network models currently favor a discrete item limit. Capacity differs markedly across individuals and groups, and recent research indicates that some of these differences reflect true differences in storage capacity whereas others reflect variations in the ability to use memory capacity efficiently. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Perception
                Perception
                SAGE Publications
                0301-0066
                1468-4233
                May 2021
                April 17 2021
                May 2021
                : 50
                : 5
                : 470-478
                Affiliations
                [1 ]Johannes Gutenberg-Universität Mainz, Germany
                Article
                10.1177/03010066211006545
                53b97e4b-cd94-4afd-a732-73732835b4fb
                © 2021

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article