8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart.

      Circulation
      Animals, Apoptosis, physiology, Carbon Monoxide, metabolism, Cardiotonic Agents, pharmacology, Chronic Disease, Fibrosis, Gene Expression, Heart Failure, drug therapy, pathology, physiopathology, Heme Oxygenase-1, genetics, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Mitochondria, Myocardial Infarction, Myocardium, Neovascularization, Physiologic, Organometallic Compounds, Oxidative Stress, Stroke Volume, Up-Regulation, Ventricular Dysfunction, Left, Ventricular Remodeling

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heme oxygenase-1 (HO-1) is an inducible stress-response protein that imparts antioxidant and antiapoptotic effects. However, its pathophysiological role in cardiac remodeling and chronic heart failure (HF) is unknown. We hypothesized that induction of HO-1 in HF alleviates pathological remodeling. Adult male nontransgenic and myocyte-restricted HO-1 transgenic mice underwent either sham operation or coronary ligation to induce HF. Four weeks after ligation, nontransgenic HF mice exhibited postinfarction left ventricular (LV) remodeling and dysfunction, hypertrophy, fibrosis, oxidative stress, apoptosis, and reduced capillary density, associated with a 2-fold increase in HO-1 expression in noninfarcted myocardium. Compared with nontransgenic mice, HO-1 transgenic HF mice exhibited significantly (P<0.05) improved postinfarction survival (94% versus 57%) and less LV dilatation (end-diastolic volume, 46+/-8 versus 85+/-32 microL), mechanical dysfunction (ejection fraction, 65+/-9% versus 49+/-16%), hypertrophy (LV/tibia length 4.4+/-0.4 versus 5.2+/-0.6 mg/mm), interstitial fibrosis (11.2+/-3.1% versus 18.5+/-3.5%), and oxidative stress (3-fold reduction in tissue malondialdehyde). Moreover, myocyte-specific HO-1 overexpression in HF promoted tissue neovascularization and ameliorated myocardial p53 expression (2-fold reduction) and apoptosis. In isolated mitochondria, mitochondrial permeability transition was inhibited by HO-1 in a carbon monoxide (CO)-dependent manner and was recapitulated by the CO donor tricarbonylchloro(glycinato)ruthenium(II) (CORM-3). HO-1-derived CO also prevented H2O2-induced cardiomyocyte apoptosis and cell death. Finally, in vivo treatment with CORM-3 alleviated postinfarction LV remodeling, p53 expression, and apoptosis. HO-1 induction in the failing heart is an important cardioprotective adaptation that opposes pathological LV remodeling, and this effect is mediated, at least in part, by CO-dependent inhibition of mitochondrial permeability transition and apoptosis. Augmentation of HO-1 or its product, CO, may represent a novel therapeutic strategy for ameliorating HF.

          Related collections

          Author and article information

          Comments

          Comment on this article