31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shewanella oneidensis Hfq promotes exponential phase growth, stationary phase culture density, and cell survival

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hfq is an RNA chaperone protein that has been broadly implicated in sRNA function in bacteria. Here we describe the construction and characterization of a null allele of the gene that encodes the RNA chaperone Hfq in Shewanella oneidensis strain MR-1, a dissimilatory metal reducing bacterium.

          Results

          Loss of hfq in S. oneidensis results in a variety of mutant phenotypes, all of which are fully complemented by addition of a plasmid-borne copy of the wild type hfq gene. Aerobic cultures of the hfq∆ mutant grow more slowly through exponential phase than wild type cultures, and hfq∆ cultures reach a terminal cell density in stationary phase that is ~2/3 of that observed in wild type cultures. We have observed a similar growth phenotype when the hfq∆ mutant is cultured under anaerobic conditions with fumarate as the terminal electron acceptor, and we have found that the hfq∆ mutant is defective in Cr(VI) reduction. Finally, the hfq∆ mutant exhibits a striking loss of colony forming units in extended stationary phase and is highly sensitive to oxidative stress induced by H 2O 2 or methyl viologen (paraquat).

          Conclusions

          The hfq mutant in S. oneidensis exhibits pleiotropic phenotypes, including a defect in metal reduction. Our results also suggest that hfq mutant phenotypes in S. oneidensis may be at least partially due to increased sensitivity to oxidative stress.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Bug juice: harvesting electricity with microorganisms.

          It is well established that some reduced fermentation products or microbially reduced artificial mediators can abiotically react with electrodes to yield a small electrical current. This type of metabolism does not typically result in an efficient conversion of organic compounds to electricity because only some metabolic end products will react with electrodes, and the microorganisms only incompletely oxidize their organic fuels. A new form of microbial respiration has recently been discovered in which microorganisms conserve energy to support growth by oxidizing organic compounds to carbon dioxide with direct quantitative electron transfer to electrodes. These organisms, termed electricigens, offer the possibility of efficiently converting organic compounds into electricity in self-sustaining systems with long-term stability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The viable but nonculturable state in bacteria.

            It had long been assumed that a bacterial cell was dead when it was no longer able to grow on routine culture media. We now know that this assumption is simplistic, and that there are many situations where a cell loses culturability but remains viable and potentially able to regrow. This mini-review defines what the "viable but nonculturable" (VBNC) state is, and illustrates the methods that can be used to show that a bacterial cell is in this physiological state. The diverse environmental factors which induce this state, and the variety of bacteria which have been shown to enter into the VBNC state, are listed. In recent years, a great amount of research has revealed what occurs in cells as they enter and exist in this state, and these studies are also detailed. The ability of cells to resuscitate from the VBNC state and return to an actively metabolizing and culturable form is described, as well as the ability of these cells to retain virulence. Finally, the question of why cells become nonculturable is addressed. It is hoped that this mini-review will encourage researchers to consider this survival state in their studies as an alternative to the conclusion that a lack of culturability indicates the cells they are examining are dead.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium

              The RNA chaperone, Hfq, plays a diverse role in bacterial physiology beyond its original role as a host factor required for replication of Qβ RNA bacteriophage. In this study, we show that Hfq is involved in the expression and secretion of virulence factors in the facultative intracellular pathogen, Salmonella typhimurium. A Salmonella hfq deletion strain is highly attenuated in mice after both oral and intraperitoneal infection, and shows a severe defect in invasion of epithelial cells and a growth defect in both epithelial cells and macrophages in vitro. Surprisingly, we find that these phenotypes are largely independent of the previously reported requirement of Hfq for expression of the stationary phase sigma factor, RpoS. Our results implicate Hfq as a key regulator of multiple aspects of virulence including regulation of motility and outer membrane protein (OmpD) expression in addition to invasion and intracellular growth. These pleiotropic effects are suggested to involve a network of regulatory small non-coding RNAs, placing Hfq at the centre of post-transcriptional regulation of virulence gene expression in Salmonella. In addition, the hfq mutation appears to cause a chronic activation of the RpoE-mediated envelope stress response which is likely due to a misregulation of membrane protein expression.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central
                1471-2180
                2013
                8 February 2013
                : 13
                : 33
                Affiliations
                [1 ]Department of Biology, Providence College, Providence, RI, USA
                Article
                1471-2180-13-33
                10.1186/1471-2180-13-33
                3575234
                23394078
                53fe8bcc-d7a7-4203-bbe7-96db9d00a0e1
                Copyright ©2013 Brennan et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 November 2012
                : 21 January 2013
                Categories
                Research Article

                Microbiology & Virology
                shewanella oneidensis,hfq,metal reduction,oxidative stress,stationary phase survival

                Comments

                Comment on this article