2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lignocelluloytic activities and composition of bacterial community in the camel rumen

      research-article
      1 , * , 2 , 3
      AIMS Microbiology
      AIMS Press
      Camel rumen, bacteria, archaea, enzymes, cellulase, xylanase

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The camel is well-adapted to utilize the poor-quality forages in the harsh desert conditions as the camel rumen sustains fibrolytic microorganisms, mainly bacteria that are capable of breaking down the lignocellulosic biomass efficiently. Exploring the composition of the bacterial community in the rumen of the camel and quantifying their cellulolytic and xylanolytic activities could lead to understanding and improving fiber fermentation and discovering novel sources of cellulases and xylanases. In this study, Illumina MiSeq sequencing of the V4 region on 16S rRNA was applied to identify the bacterial and archaeal communities in the rumen of three camels fed wheat straw and broom corn. Furthermore, rumen samples were inoculated into bacterial media enriched with xylan and different cellulose sources, including filter paper (FP), wheat straw (WS), and alfalfa hay (AH) to assess the ability of rumen bacteria to produce endo-cellulase and endo-xylanase at different fermentation intervals. The results revealed that the phylum Bacteroidetes dominated the bacterial community and Candidatus Methanomethylophilus dominated the archaeal community. Also, most of the bacterial community has fibrolytic potential and the dominant bacterial genera were Prevotella, RC9_gut_group, Butyrivibrio, Ruminococcus, Fibrobacteres, and Treponema. The highest xylanase production (884.8 mU/mL) was observed at 7 days. The highest cellulase production (1049.5 mU/mL) was observed when rumen samples were incubated with Alfalfa hay for 7 days.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            QIIME allows analysis of high-throughput community sequencing data.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              PEAR: a fast and accurate Illumina Paired-End reAd mergeR

              Motivation: The Illumina paired-end sequencing technology can generate reads from both ends of target DNA fragments, which can subsequently be merged to increase the overall read length. There already exist tools for merging these paired-end reads when the target fragments are equally long. However, when fragment lengths vary and, in particular, when either the fragment size is shorter than a single-end read, or longer than twice the size of a single-end read, most state-of-the-art mergers fail to generate reliable results. Therefore, a robust tool is needed to merge paired-end reads that exhibit varying overlap lengths because of varying target fragment lengths. Results: We present the PEAR software for merging raw Illumina paired-end reads from target fragments of varying length. The program evaluates all possible paired-end read overlaps and does not require the target fragment size as input. It also implements a statistical test for minimizing false-positive results. Tests on simulated and empirical data show that PEAR consistently generates highly accurate merged paired-end reads. A highly optimized implementation allows for merging millions of paired-end reads within a few minutes on a standard desktop computer. On multi-core architectures, the parallel version of PEAR shows linear speedups compared with the sequential version of PEAR. Availability and implementation: PEAR is implemented in C and uses POSIX threads. It is freely available at http://www.exelixis-lab.org/web/software/pear. Contact: Tomas.Flouri@h-its.org
                Bookmark

                Author and article information

                Journal
                AIMS Microbiol
                AIMS Microbiol
                microbiol
                AIMS Microbiology
                AIMS Press
                2471-1888
                24 September 2021
                2021
                : 7
                : 3
                : 354-367
                Affiliations
                [1 ] Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
                [2 ] Lethbridge Research and Development Centre, Agriculture and Agrifood Canada, Lethbridge, AB, Canada
                [3 ] Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
                Author notes
                * Correspondence: Email: rabee_a_m@ 123456yahoo.com ; Tel: +201096884139; Fax: +20226357858.
                Article
                microbiol-07-03-022
                10.3934/microbiol.2021022
                8500796
                34708177
                54450416-ed7c-4743-9a24-185f9661a74b
                © 2021 the Author(s), licensee AIMS Press

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0)

                History
                : 12 July 2021
                : 15 September 2021
                Categories
                Research Article

                camel rumen,bacteria,archaea,enzymes,cellulase,xylanase
                camel rumen, bacteria, archaea, enzymes, cellulase, xylanase

                Comments

                Comment on this article