18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased peripherin in sympathetic axons innervating plantar metatarsal arteries in STZ-induced type I diabetic rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A common characteristic of axonopathy is the abnormal accumulation of cytoskeletal proteins. We recently reported that streptozotocin (STZ)-induced type 1 diabetes produced a change in the morphology of sympathetic nerve fibers supplying rat plantar metatarsal arteries (PMAs). Here we investigated whether these morphological changes are associated with axonal accumulation of the type III intermediate filament peripherin and the microtubule protein β-tubulin III, as both are implicated in axonal remodeling. PMAs from hyperglycemic STZ-treated rats receiving a low dose of insulin (STZ-LI) were compared with those from normoglycemic STZ-treated rats receiving a high dose of insulin (STZ-HI) and vehicle-treated controls. Western blotting revealed an increase in protein expression level for peripherin in PMAs from STZ-LI rats but no change in that for β-tubulin III. In addition, there was an increase in the number of peripherin immunoreactive nerve fibers in the perivascular nerve plexus of PMAs from STZ-LI rats. Co-labeling for peripherin and neuropeptide Y (a marker for sympathetic axons) revealed that peripherin immunoreactivity increased in sympathetic axons. None of these changes were detected in PMAs from STZ-HI rats, indicating that increased peripherin in sympathetic axons of STZ-LI rats is likely due to hyperglycemia and provides a marker of diabetes-induced nerve damage.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The role of endogenous nerve growth factor in human diabetic neuropathy.

          Nerve growth factor (NGF) is trophic to sensory and sympathetic fibers. In animal models, NGF is depleted in diabetic nerves and NGF deprivation produces hypoalgesia. Exogenous NGF can reverse some of the pathological changes in diabetic nerves and NGF excess leads to hyperalgesia. We have quantified sensory and autonomic function in early diabetic polyneuropathy and correlated changes with levels of NGF and neuropeptides in affected skin. We describe an early length-dependent dysfunction of sensory small-diameter fibers, prior to dysfunction of sympathetic fibers, with depletion of skin NGF and the sensory neuropeptide substance P. We describe a significant correlation between NGF depletion and decreased skin axon-reflex vasodilation, mediated by small sensory fibers partly via substance P release. Immunostaining shows depletion of NGF in keratinocytes in diabetic skin. We propose that a decrease in endogenous skin-derived NGF influences the presentation of diabetic polyneuropathy, although metabolic or vascular abnormalities may be the cause of the neuropathy. As loss of nociception and axon-reflex vasodilation contribute to diabetic foot ulceration, early and prolonged NGF treatment at an appropriate dose may provide rational prophylaxis for this condition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic neuropathy and nerve regeneration.

            Diabetic neuropathy is the most common peripheral neuropathy in western countries. Although every effort has been made to clarify the pathogenic mechanism of diabetic neuropathy, thereby devising its ideal therapeutic drugs, neither convinced hypotheses nor unequivocally effective drugs have been established. In view of the pathologic basis for the treatment of diabetic neuropathy, it is important to enhance nerve regeneration as well as prevent nerve degeneration. Nerve regeneration or sprouting in diabetes may occur not only in the nerve trunk but also in the dermis and around dorsal root ganglion neurons, thereby being implicated in the generation of pain sensation. Thus, inadequate nerve regeneration unequivocally contributes to the pathophysiologic mechanism of diabetic neuropathy. In this context, the research on nerve regeneration in diabetes should be more accelerated. Indeed, nerve regenerative capacity has been shown to be decreased in diabetic patients as well as in diabetic animals. Disturbed nerve regeneration in diabetes has been ascribed at least in part to all or some of decreased levels of neurotrophic factors, decreased expression of their receptors, altered cellular signal pathways and/or abnormal expression of cell adhesion molecules, although the mechanisms of their changes remain almost unclear. In addition to their steady-state changes in diabetes, nerve injury induces injury-specific changes in individual neurotrophic factors, their receptors and their intracellular signal pathways, which are closely linked with altered neuronal function, varying from neuronal survival and neurite extension/nerve regeneration to apoptosis. Although it is essential to clarify those changes for understanding the mechanism of disturbed nerve regeneration in diabetes, very few data are now available. Rationally accepted replacement therapy with neurotrophic factors has not provided any success in treating diabetic neuropathy. Aside from adverse effects of those factors, more rigorous consideration for their delivery system may be needed for any possible success. Although conventional therapeutic drugs like aldose reductase (AR) inhibitors and vasodilators have been shown to enhance nerve regeneration, their efficacy should be strictly evaluated with respect to nerve regenerative capacity. For this purpose, especially clinically, skin biopsy, by which cutaneous nerve pathology including nerve regeneration can be morphometrically evaluated, might be a safe and useful examination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons.

              Peripherin, a neuronal intermediate filament protein implicated in neurodegenerative disease, coexists with the neurofilament triplet proteins [neurofilament light (NFL), medium (NFM), and heavy (NFH) chain] but has an unknown function. The earlier peak expression of peripherin than the triplet during brain development and its ability to form homopolymers, unlike the triplet, which are obligate heteropolymers, have supported a widely held view that peripherin and neurofilament triplets form separate filament systems. However, here, we demonstrate that, despite a postnatal decline in expression, peripherin is as abundant as the triplet in the adult PNS and exists in a relatively fixed stoichiometry with these subunits. Peripherin exhibits a distribution pattern identical to those of triplet proteins in sciatic axons and colocalizes with NFL on single neurofilaments by immunogold electron microscopy. Peripherin also coassembles into a single network of filaments containing NFL, NFM, and NFH with and without α-internexin in quadruple- or quintuple-transfected SW13vim(-) cells. Genetically deleting NFL in mice dramatically reduces peripherin content in sciatic axons. Moreover, peripherin mutations has been shown to disrupt the neurofilament network in transfected SW13vim(-) cells. These data show that peripherin and the neurofilament proteins are functionally interdependent. The results strongly support the view that, rather than forming an independent structure, peripherin is a subunit of neurofilaments in the adult PNS. Our findings provide a basis for its close relationship with neurofilaments in PNS diseases associated with neurofilament accumulation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                07 May 2014
                2014
                : 8
                : 99
                Affiliations
                Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
                Author notes

                Edited by: Stuart Mazzone, University of Queensland, Australia

                Reviewed by: Miyako Takaki, Nara Medical University, Japan; Deborah H. Damon, University of Vermont, USA

                *Correspondence: James A. Brock, Department of Anatomy and Neuroscience, University of Melbourne, Medical Building, Parkville, Melbourne, VIC 3010, Australia e-mail: j.brock@ 123456unimelb.edu.au

                This article was submitted to Autonomic Neuroscience, a section of the journal Frontiers in Neuroscience.

                Article
                10.3389/fnins.2014.00099
                4019865
                54d68090-32bf-4a3b-b41a-cea8283c5511
                Copyright © 2014 Johansen, Frugier, Hunne and Brock.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 December 2013
                : 16 April 2014
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 43, Pages: 11, Words: 8843
                Categories
                Neurology
                Original Research Article

                Neurosciences
                streptozotocin,type i diabetes,peripherin,β-tubulin iii,sympathetic perivascular nerves

                Comments

                Comment on this article