147
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Mouse-Adapted SARS-Coronavirus Causes Disease and Mortality in BALB/c Mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          No single animal model for severe acute respiratory syndrome (SARS) reproduces all aspects of the human disease. Young inbred mice support SARS-coronavirus (SARS-CoV) replication in the respiratory tract and are available in sufficient numbers for statistical evaluation. They are relatively inexpensive and easily accessible, but their use in SARS research is limited because they do not develop illness following infection. Older (12- to 14-mo-old) BALB/c mice develop clinical illness and pneumonitis, but they can be hard to procure, and immune senescence complicates pathogenesis studies. We adapted the SARS-CoV (Urbani strain) by serial passage in the respiratory tract of young BALB/c mice. Fifteen passages resulted in a virus (MA15) that is lethal for mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by lymphopenia, neutrophilia, and pathological changes in the lungs. Abundant viral antigen is extensively distributed in bronchial epithelial cells and alveolar pneumocytes, and necrotic cellular debris is present in airways and alveoli, with only mild and focal pneumonitis. These observations suggest that mice infected with MA15 die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes and ciliated epithelial cells. The MA15 virus has six coding mutations associated with adaptation and increased virulence; when introduced into a recombinant SARS-CoV, these mutations result in a highly virulent and lethal virus (rMA15), duplicating the phenotype of the biologically derived MA15 virus. Intranasal inoculation with MA15 reproduces many aspects of disease seen in severe human cases of SARS. The availability of the MA15 virus will enhance the use of the mouse model for SARS because infection with MA15 causes morbidity, mortality, and pulmonary pathology. This virus will be of value as a stringent challenge in evaluation of the efficacy of vaccines and antivirals.

          Author Summary

          Severe acute respiratory syndrome (SARS) is a severe, sometimes fatal respiratory disease caused by a coronavirus (SARS-CoV). In order to study the disease and evaluate vaccines and antiviral drugs, animal models that mimic the disease are necessary. However, no single animal model for SARS reproduces all aspects of the disease as it affects humans. SARS-CoV replicates in the lungs of young mice, but they do not show signs of illness. Adaptation of SARS-CoV by serial passage in the lungs of mice resulted in a virus (MA15) that is lethal for young mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by hematological changes and pathological changes in the lungs. Mice infected with MA15 virus die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes, and ciliated epithelial cells. The MA15 virus has six coding mutations in its genome, which, when introduced into a recombinant SARS-CoV, confer lethality. The MA15 virus will enhance the use of the mouse model for SARS because infection with this virus in mice reproduces many aspects of severe human disease, including morbidity, mortality, and pulmonary pathology.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

          P Rota (2003)
          In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Mechanisms and enzymes involved in SARS coronavirus genome expression.

            A novel coronavirus is the causative agent of the current epidemic of severe acute respiratory syndrome (SARS). Coronaviruses are exceptionally large RNA viruses and employ complex regulatory mechanisms to express their genomes. Here, we determined the sequence of SARS coronavirus (SARS-CoV), isolate Frankfurt 1, and characterized key RNA elements and protein functions involved in viral genome expression. Important regulatory mechanisms, such as the (discontinuous) synthesis of eight subgenomic mRNAs, ribosomal frameshifting and post-translational proteolytic processing, were addressed. Activities of three SARS coronavirus enzymes, the helicase and two cysteine proteinases, which are known to be critically involved in replication, transcription and/or post-translational polyprotein processing, were characterized. The availability of recombinant forms of key replicative enzymes of SARS coronavirus should pave the way for high-throughput screening approaches to identify candidate inhibitors in compound libraries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coronavirus as a possible cause of severe acute respiratory syndrome.

              An outbreak of severe acute respiratory syndrome (SARS) has been reported in Hong Kong. We investigated the viral cause and clinical presentation among 50 patients. We analysed case notes and microbiological findings for 50 patients with SARS, representing more than five separate epidemiologically linked transmission clusters. We defined the clinical presentation and risk factors associated with severe disease and investigated the causal agents by chest radiography and laboratory testing of nasopharyngeal aspirates and sera samples. We compared the laboratory findings with those submitted for microbiological investigation of other diseases from patients whose identity was masked. Patients' age ranged from 23 to 74 years. Fever, chills, myalgia, and cough were the most frequent complaints. When compared with chest radiographic changes, respiratory symptoms and auscultatory findings were disproportionally mild. Patients who were household contacts of other infected people and had older age, lymphopenia, and liver dysfunction were associated with severe disease. A virus belonging to the family Coronaviridae was isolated from two patients. By use of serological and reverse-transcriptase PCR specific for this virus, 45 of 50 patients with SARS, but no controls, had evidence of infection with this virus. A coronavirus was isolated from patients with SARS that might be the primary agent associated with this disease. Serological and molecular tests specific for the virus permitted a definitive laboratory diagnosis to be made and allowed further investigation to define whether other cofactors play a part in disease progression.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                January 2007
                12 January 2007
                : 3
                : 1
                : e5
                Affiliations
                [1 ]Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
                [2 ]Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [3 ]Infectious Disease Pathology Activity, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
                [4 ]Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [5 ]Carolina Vaccine Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [6 ]Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
                University of Florida, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: ksubbarao@ 123456niaid.nih.gov
                Article
                06-PLPA-RA-0319R2 plpa-03-01-03
                10.1371/journal.ppat.0030005
                1769406
                17222058
                54f08625-ae47-4574-a26f-749e93b563e0
                This is an open-access article distributed under the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 11 August 2006
                : 15 November 2006
                Page count
                Pages: 15
                Categories
                Research Article
                Infectious Diseases
                Pathology
                Virology
                Viruses
                Custom metadata
                Roberts A, Deming D, Paddock CD, Cheng A, Yount B, et al. (2007) A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog 3(1): e5. doi: 10.1371/journal.ppat.0030005

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article