16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of Artificial Intelligence and Machine Learning for Discovery of Drugs for Neglected Tropical Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neglected tropical diseases continue to create high levels of morbidity and mortality in a sizeable fraction of the world’s population, despite ongoing research into new treatments. Some of the most important technological developments that have accelerated drug discovery for diseases of affluent countries have not flowed down to neglected tropical disease drug discovery. Pharmaceutical development business models, cost of developing new drug treatments and subsequent costs to patients, and accessibility of technologies to scientists in most of the affected countries are some of the reasons for this low uptake and slow development relative to that for common diseases in developed countries. Computational methods are starting to make significant inroads into discovery of drugs for neglected tropical diseases due to the increasing availability of large databases that can be used to train ML models, increasing accuracy of these methods, lower entry barrier for researchers, and widespread availability of public domain machine learning codes. Here, the application of artificial intelligence, largely the subset called machine learning, to modelling and prediction of biological activities and discovery of new drugs for neglected tropical diseases is summarized. The pathways for the development of machine learning methods in the short to medium term and the use of other artificial intelligence methods for drug discovery is discussed. The current roadblocks to, and likely impacts of, synergistic new technological developments on the use of ML methods for neglected tropical disease drug discovery in the future are also discussed.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Drug repurposing: progress, challenges and recommendations

          Given the high attrition rates, substantial costs and slow pace of new drug discovery and development, repurposing of 'old' drugs to treat both common and rare diseases is increasingly becoming an attractive proposition because it involves the use of de-risked compounds, with potentially lower overall development costs and shorter development timelines. Various data-driven and experimental approaches have been suggested for the identification of repurposable drug candidates; however, there are also major technological and regulatory challenges that need to be addressed. In this Review, we present approaches used for drug repurposing (also known as drug repositioning), discuss the challenges faced by the repurposing community and recommend innovative ways by which these challenges could be addressed to help realize the full potential of drug repurposing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Deep Learning Approach to Antibiotic Discovery

            Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018

              How much do drug companies spend on research and development to bring a new medicine to market? In this study, which included 63 of 355 new therapeutic drugs and biologic agents approved by the US Food and Drug Administration between 2009 and 2018, the estimated median capitalized research and development cost per product was $985 million, counting expenditures on failed trials. Data were mainly accessible for smaller firms, products in certain therapeutic areas, orphan drugs, first-in-class drugs, therapeutic agents that received accelerated approval, and products approved between 2014 and 2018. This study provides an estimate of research and development costs for new therapeutic agents based on publicly available data; differences from previous studies may reflect the spectrum of products analyzed and the restricted availability of data in the public domain. The mean cost of developing a new drug has been the subject of debate, with recent estimates ranging from $314 million to $2.8 billion. To estimate the research and development investment required to bring a new therapeutic agent to market, using publicly available data. Data were analyzed on new therapeutic agents approved by the US Food and Drug Administration (FDA) between 2009 and 2018 to estimate the research and development expenditure required to bring a new medicine to market. Data were accessed from the US Securities and Exchange Commission, Drugs@FDA database, and ClinicalTrials.gov, alongside published data on clinical trial success rates. Conduct of preclinical and clinical studies of new therapeutic agents. Median and mean research and development spending on new therapeutic agents approved by the FDA, capitalized at a real cost of capital rate (the required rate of return for an investor) of 10.5% per year, with bootstrapped CIs. All amounts were reported in 2018 US dollars. The FDA approved 355 new drugs and biologics over the study period. Research and development expenditures were available for 63 (18%) products, developed by 47 different companies. After accounting for the costs of failed trials, the median capitalized research and development investment to bring a new drug to market was estimated at $985.3 million (95% CI, $683.6 million-$1228.9 million), and the mean investment was estimated at $1335.9 million (95% CI, $1042.5 million-$1637.5 million) in the base case analysis. Median estimates by therapeutic area (for areas with ≥5 drugs) ranged from $765.9 million (95% CI, $323.0 million-$1473.5 million) for nervous system agents to $2771.6 million (95% CI, $2051.8 million-$5366.2 million) for antineoplastic and immunomodulating agents. Data were mainly accessible for smaller firms, orphan drugs, products in certain therapeutic areas, first-in-class drugs, therapeutic agents that received accelerated approval, and products approved between 2014 and 2018. Results varied in sensitivity analyses using different estimates of clinical trial success rates, preclinical expenditures, and cost of capital. This study provides an estimate of research and development costs for new therapeutic agents based on publicly available data. Differences from previous studies may reflect the spectrum of products analyzed, the restricted availability of data in the public domain, and differences in underlying assumptions in the cost calculations. This study uses publicly available data to analyze research and development spending to win FDA approval and bring new drugs to market between 2009 and 2018.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Chem
                Front Chem
                Front. Chem.
                Frontiers in Chemistry
                Frontiers Media S.A.
                2296-2646
                15 March 2021
                2021
                : 9
                : 614073
                Affiliations
                [ 1 ]Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
                [ 2 ]Latrobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
                [ 3 ]School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
                [ 4 ]CSIRO Data61, Pullenvale, QLD, Australia
                Author notes

                Edited by: Luciana Scotti, Federal University of Paraíba, Brazil

                Reviewed by: Rajeev K. Singla, Sichuan University, China

                Rupesh V. Chikhale, University of East Anglia, United Kingdom

                *Correspondence: David A. Winkler, d.winkler@ 123456latrobe.edu.au

                This article was submitted to Medicinal and Pharmaceutical Chemistry, a section of the journal Frontiers in Chemistry

                Article
                614073
                10.3389/fchem.2021.614073
                8005575
                33791277
                54f35a43-830a-4bc0-9a65-c84cc07061fa
                Copyright © 2021 Winkler.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 October 2020
                : 18 January 2021
                Categories
                Chemistry
                Review

                machine learning,artificial intelligence,drug discovery,neglected tropical diseases,structure-property relationships

                Comments

                Comment on this article