2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Production of electricity and reduction of high-fat diet-induced IL-6 by glucose fermentation of Leuconostoc mesenteroides

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electrogenic bacteria can mediate electron transfer to conserve energy and promote growth. To examine bacterial electrogenicity, an L. mesenteroides EH-1 strain was cultured in rich media in the presence and absence of 2% glucose. After 12 h incubation, glucose triggered fermentation of L. mesenteroides EH-1 to produce >10 mmol/l acetate and elicit electricity measured by voltage changes. The electricity production was mediated by glucose fermentation since pre-treatment of L. mesenteroides EH-1 with furfural, a fermentation inhibitor, completely diminished the voltage increases. The deficiency of furfural pre-treated L. mesenteroides EH-1 in electricity production can be restored by the external addition of acetate into the bacterial culture, suggesting the function of acetate as an electron donor. Oral administration of HFD-fed mice with L. mesenteroides EH-1 in the presence or absence of glucose significantly attenuated the high level of pro-inflammatory IL-6 cytokine in blood. Bacterial electricity can be elicited by fermentation. Supplementation of fermenting and electrogenic L. mesenteroides EH-1 may provide a novel approach for the reduction of pro-inflammatory IL-6 cytokine that increased in chronic inflammation, autoimmune diseases, cancers, and infections.

          Highlights

          • Electricity production of L. mesenteroides EH-1 was mediated by glucose fermentation.

          • Pre-treatment of L. mesenteroides EH-1 with furfural completely diminished electricity.

          • Acetate restore L. mesenteroides EH-1 electricity production pre-treated with Furfural.

          • Administration of L. mesenteroides EH-1 significantly decreased the IL-6 in blood.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors

          ABSTRACT Since the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, it has rapidly spread across many other countries. While the majority of patients were considered mild, critically ill patients involving respiratory failure and multiple organ dysfunction syndrome are not uncommon, which could result death. We hypothesized that cytokine storm is associated with severe outcome. We enrolled 102 COVID-19 patients who were admitted to Renmin Hospital (Wuhan, China). All patients were classified into moderate, severe and critical groups according to their symptoms. 45 control samples of healthy volunteers were also included. Inflammatory cytokines and C-Reactive Protein (CRP) profiles of serum samples were analyzed by specific immunoassays. Results showed that COVID-19 patients have higher serum level of cytokines (TNF-α, IFN-γ, IL-2, IL-4, IL-6 and IL-10) and CRP than control individuals. Within COVID-19 patients, serum IL-6 and IL-10 levels are significantly higher in critical group (n = 17) than in moderate (n = 42) and severe (n = 43) group. The levels of IL-10 is positively correlated with CRP amount (r = 0.41, P < 0.01). Using univariate logistic regression analysis, IL-6 and IL-10 are found to be predictive of disease severity and receiver operating curve analysis could further confirm this result (AUC = 0.841, 0.822 respectively). Our result indicated higher levels of cytokine storm is associated with more severe disease development. Among them, IL-6 and IL-10 can be used as predictors for fast diagnosis of patients with higher risk of disease deterioration. Given the high levels of cytokines induced by SARS-CoV-2, treatment to reduce inflammation-related lung damage is critical.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut inflammation provides a respiratory electron acceptor for Salmonella

            Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation reacted with endogenous, luminal sulphur compounds (thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular electron transfer mechanisms between microorganisms and minerals.

              Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.
                Bookmark

                Author and article information

                Journal
                Biochem Biophys Res Commun
                Biochem. Biophys. Res. Commun
                Biochemical and Biophysical Research Communications
                The Authors. Published by Elsevier Inc.
                0006-291X
                1090-2104
                30 September 2020
                30 September 2020
                Affiliations
                [a ]Department of Life Sciences, National Central University, Taiwan
                [b ]Department of Biomedical Sciences and Engineering, National Central University, Taiwan
                [c ]Immunology Research Center, National Health Research Institutes, Taiwan
                Author notes
                []Corresponding author.
                Article
                S0006-291X(20)31857-X
                10.1016/j.bbrc.2020.09.105
                7525268
                54ff4794-dfd1-4d42-a5cf-55f2859dbf9d
                © 2020 The Authors

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 24 August 2020
                : 16 September 2020
                Categories
                Article

                Biochemistry
                l. mesenteroides,electrogenic,il-6,fermentation
                Biochemistry
                l. mesenteroides, electrogenic, il-6, fermentation

                Comments

                Comment on this article