13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Two-dimensional detector software: From real detector to idealised image or two-theta scan

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An ultrafast rechargeable aluminium-ion battery.

            The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g(-1) and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g(-1) (equivalent to ~3,000 W kg(-1)), and to withstand more than 7,500 cycles without capacity decay.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Restoring the density-gradient expansion for exchange in solids and surfaces

              Successful modern generalized gradient approximations (GGA's) are biased toward atomic energies. Restoration of the first-principles gradient expansion for exchange over a wide range of density gradients eliminates this bias. We introduce PBEsol, a revised Perdew-Burke-Ernzerhof GGA that improves equilibrium properties of densely-packed solids and their surfaces.
                Bookmark

                Author and article information

                Journal
                Nature Materials
                Nat Mater
                Springer Nature
                1476-1122
                1476-4660
                September 18 2017
                September 18 2017
                : 16
                : 11
                : 1142-1148
                Article
                10.1038/nmat4976
                28920941
                54ff8ea2-7cc3-42b7-98ef-6fc9294fda95
                © 2017
                History

                Comments

                Comment on this article