10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The regenerative abilities of adipose-derived mesenchymal stem cells (ASCs) harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration were evaluated. ASC yield and viability, and expression of most osteogenic, adipogenic, and key regenerative genes were equivalent between the two methods. Cells harvested via UAL showed comparable abilities to enhance cutaneous regeneration and appear suitable for cell therapy and tissue engineering applications.

          Abstract

          Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31−/CD45−), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications.

          Significance

          Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Adult mesenchymal stem cells for tissue engineering versus regenerative medicine.

          Adult mesenchymal stem cells (MSCs) can be isolated from bone marrow or marrow aspirates and because they are culture-dish adherent, they can be expanded in culture while maintaining their multipotency. The MSCs have been used in preclinical models for tissue engineering of bone, cartilage, muscle, marrow stroma, tendon, fat, and other connective tissues. These tissue-engineered materials show considerable promise for use in rebuilding damaged or diseased mesenchymal tissues. Unanticipated is the realization that the MSCs secrete a large spectrum of bioactive molecules. These molecules are immunosuppressive, especially for T-cells and, thus, allogeneic MSCs can be considered for therapeutic use. In this context, the secreted bioactive molecules provide a regenerative microenvironment for a variety of injured adult tissues to limit the area of damage and to mount a self-regulated regenerative response. This regenerative microenvironment is referred to as trophic activity and, therefore, MSCs appear to be valuable mediators for tissue repair and regeneration. The natural titers of MSCs that are drawn to sites of tissue injury can be augmented by allogeneic MSCs delivered via the bloodstream. Indeed, human clinical trials are now under way to use allogeneic MSCs for treatment of myocardial infarcts, graft-versus-host disease, Crohn's Disease, cartilage and meniscus repair, stroke, and spinal cord injury. This review summarizes the biological basis for the in vivo functioning of MSCs through development and aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative and reproducible murine model of excisional wound healing.

            The goal of animal wound healing models is to replicate human physiology and predict therapeutic outcomes. There is currently no model of wound healing in rodents that closely parallels human wound healing. Rodents are attractive candidates for wound healing studies because of their availability, low cost, and ease of handling. However, rodent models have been criticized because the major mechanism of wound closure is contraction, whereas in humans reepithelialization and granulation tissue formation are the major mechanisms involved. This article describes a novel model of wound healing in mice utilizing wound splinting that is accurate, reproducible, minimizes wound contraction, and allows wound healing to occur through the processes of granulation and reepithelialization. Our results show that splinted wounds have an increased amount of granulation tissue deposition as compared to controls, but the rate of reepithelialization is not affected. Thus, this model eliminates wound contraction and allows rodents' wounds to heal by epithelialization and granulation tissue formation. Given these analogies to human wound healing, we believe that this technique is a useful model for the study of wound healing mechanisms and for the evaluation of new therapeutic modalities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant.

              We have utilized a transendothelial lymphocyte chemotaxis assay to identify and purify a lymphocyte chemoattractant in supernatants of mitogen-stimulated peripheral blood mononuclear cells. Amino acid sequence analysis revealed identity with monocyte chemoattractant protein 1 (MCP-1), a chemoattractant previously thought to be specific for monocytes. Recombinant MCP-1 is chemoattractive for purified T lymphocytes and for CD3+ lymphocytes in peripheral blood lymphocyte preparations. The T-cell response to MCP-1 is dose-dependent and chemotactic, rather than chemokinetic. Phenotyping of chemoattracted T lymphocytes shows they are an activated memory subset. The response to MCP-1 by T lymphocytes can be duplicated in the absence of an endothelial monolayer and the majority of T-lymphocyte chemotactic activity in mitogen-stimulated peripheral blood mononuclear cell supernatants can be neutralized by antibody to MCP-1. Thus, MCP-1 is the major lymphocyte chemoattractant secreted by mitogen-stimulated peripheral blood mononuclear cells and is capable of acting as a potent T-lymphocyte, as well as monocyte, chemoattractant. This may help explain why monocytes and T lymphocytes of the memory subset are always found together at sites of antigen-induced inflammation.
                Bookmark

                Author and article information

                Journal
                Stem Cells Transl Med
                Stem Cells Transl Med
                Stem Cells Translational Medicine
                sctm
                Stem Cells Translational Medicine
                Stem Cells Translational Medicine
                AlphaMed Press (Durham, NC, USA )
                2157-6564
                2157-6580
                February 2016
                23 December 2015
                1 August 2016
                : 5
                : 2
                : 248-257
                Affiliations
                [1] aHagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
                [2] bSection of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria
                [3] cDepartment of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
                [4] dInstitute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA
                Author notes
                [*]

                Contributed equally.

                Correspondence: Geoffrey C. Gurtner, M.D., Stanford University School of Medicine, 257 Campus Drive, Stanford, California 94305, USA. Telephone: 650-736-2776; E-Mail: ggurtner@ 123456stanford.edu
                Article
                20150064
                10.5966/sctm.2015-0064
                4729547
                26702129
                553f08bb-290b-4f60-a84b-51c87e96d00f
                ©AlphaMed Press
                History
                : 07 April 2015
                : 28 October 2015
                Page count
                Pages: 10
                Categories
                11
                47
                Tissue Engineering and Regenerative Medicine

                adult mesenchymal stem cells,cell therapy,ultrasound-assisted liposuction,adipose-derived stem cells,adipogenesis,regenerative medicine,fat harvest

                Comments

                Comment on this article