5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accuracy of Ultrasound in Diagnosis of Pneumothorax: A Comparison between Neonates and Adults—A Systematic Review and Meta-Analysis

      review-article
      1 , 2 , 2 ,
      Canadian Respiratory Journal
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The present systematic review and meta-analysis were conducted to investigate the accuracy of ultrasound in the diagnosis of pneumothorax in neonates and adults.

          Method

          The searches were conducted by two independent researchers (MS and HD) to find the relevant studies published from 01/01/2009 until the end of 01/01/2019. We searched for published literature in the English language in MEDLINE via PubMed, Embase™ via ovid, the Cochrane Library, and Trip database. For literature published in other languages, we searched national databases (Magiran and SID), KoreaMed, and LILACS, and we searched OpenGrey ( http://www.opengrey.eu/) and the World Health Organization Clinical Trials Registry ( http://who.int/ictrp) for unpublished literature and ongoing studies. The keywords used in the search strategy were pneumothorax or ultrasound or chest ultrasonography or neonate or adult or aerothorax or sensitivity or specificity or diagnostic accuracy. The list of previous study resources and systematic reviews was also searched for identifying the published studies (MS and HD). Analyses were performed using Meta-Disc 1.4.

          Results

          In total, 1,565 patients (255 neonates, 1212 adults, and 101 pediatrics suspected of pneumothorax) were investigated in 10 studies. The overall specificity of chest ultrasound in the diagnosis of pneumothorax in both populations of adults and neonates was 85.1% at the confidence interval of 95 percent (95% CI 81.1%–88.5%). At the confidence interval of 95 percent, the sensitivity was 98.6% (95% CI 97.7%–99.2%). The diagnostic odds ratio was 387.72 (95% CI 76.204–1972.7). For the diagnosis of pneumothorax in neonates, the ultrasound sensitivity was 96.7% at the confidence interval of 95 percent (95% CI 88.3%–99.6%). At the confidence interval of 95 percent, the specificity was 100% (95% CI 97.7%–100%). For the diagnosis of pneumothorax in adults, the ultrasound sensitivity was 82.9% at the confidence interval of 95 percent (95% CI 78.3–86.9%). At the confidence interval of 95 percent, the specificity was 98.2% (95% CI 97.0%–99.0%). The diagnostic odds ratio was 423.13 (95% CI 45.222–3959.1). Analyzing studies indicated that the sensitivity of “absence lung sliding” sign for the diagnosis of pneumothorax was 87.2% (95% CI 77.7–93.7), and specificity was 99.4% (95% CI 96.5%–100%). DOR was 556.74 (95% CI 100.03–3098.7). The sensitivity of “lung point” sign for the diagnosis of pneumothorax was 82.1% (95% CI 71.7%–89.8%), and the specificity was 100% (at the confidence interval of 95% CI 97.6%–100%). DOR was 298.0 (95% CI 58.893–1507.8).

          Conclusion

          The diagnosis of pneumothorax using ultrasound is accurate and reliable; additionally, it can result in timely diagnoses specifically in neonatal pneumothorax. Using this method facilitates the therapy process; lack of ionizing radiation and easy operation are benefits of this imaging technique.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Meta-DiSc: a software for meta-analysis of test accuracy data

          Background Systematic reviews and meta-analyses of test accuracy studies are increasingly being recognised as central in guiding clinical practice. However, there is currently no dedicated and comprehensive software for meta-analysis of diagnostic data. In this article, we present Meta-DiSc, a Windows-based, user-friendly, freely available (for academic use) software that we have developed, piloted, and validated to perform diagnostic meta-analysis. Results Meta-DiSc a) allows exploration of heterogeneity, with a variety of statistics including chi-square, I-squared and Spearman correlation tests, b) implements meta-regression techniques to explore the relationships between study characteristics and accuracy estimates, c) performs statistical pooling of sensitivities, specificities, likelihood ratios and diagnostic odds ratios using fixed and random effects models, both overall and in subgroups and d) produces high quality figures, including forest plots and summary receiver operating characteristic curves that can be exported for use in manuscripts for publication. All computational algorithms have been validated through comparison with different statistical tools and published meta-analyses. Meta-DiSc has a Graphical User Interface with roll-down menus, dialog boxes, and online help facilities. Conclusion Meta-DiSc is a comprehensive and dedicated test accuracy meta-analysis software. It has already been used and cited in several meta-analyses published in high-ranking journals. The software is publicly available at .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations.

            We consider how to combine several independent studies of the same diagnostic test, where each study reports an estimated false positive rate (FPR) and an estimated true positive rate (TPR). We propose constructing a summary receiver operating characteristic (ROC) curve by the following steps. (i) Convert each FPR to its logistic transform U and each TPR to its logistic transform V after increasing each observed frequency by adding 1/2. (ii) For each study calculate D = V - U, which is the log odds ratio of TPR and FPR, and S = V + U, an implied function of test threshold; then plot each study's point (Si, Di). (iii) Fit a robust-resistant regression line to these points (or an equally weighted least-squares regression line), with V - U as the dependent variable. (iv) Back-transform the line to ROC space. To avoid model-dependent extrapolation from irrelevant regions of ROC space we propose defining a priori a value of FPR so large that the test simply would not be used at that FPR, and a value of TPR so low that the test would not be used at that TPR. Then (a) only data points lying in the thus defined north-west rectangle of the unit square are used in the data analysis, and (b) the estimated summary ROC is depicted only within that subregion of the unit square. We illustrate the methods using simulated and real data sets, and we point to ways of comparing different tests and of taking into account the effects of covariates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Lung ultrasound in the critically ill

              Lung ultrasound is a basic application of critical ultrasound, defined as a loop associating urgent diagnoses with immediate therapeutic decisions. It requires the mastery of ten signs: the bat sign (pleural line), lung sliding (yielding seashore sign), the A-line (horizontal artifact), the quad sign, and sinusoid sign indicating pleural effusion, the fractal, and tissue-like sign indicating lung consolidation, the B-line, and lung rockets indicating interstitial syndrome, abolished lung sliding with the stratosphere sign suggesting pneumothorax, and the lung point indicating pneumothorax. Two more signs, the lung pulse and the dynamic air bronchogram, are used to distinguish atelectasis from pneumonia. All of these disorders were assessed using CT as the “gold standard” with sensitivity and specificity ranging from 90% to 100%, allowing ultrasound to be considered as a reasonable bedside “gold standard” in the critically ill. The BLUE-protocol is a fast protocol (<3 minutes), which allows diagnosis of acute respiratory failure. It includes a venous analysis done in appropriate cases. Pulmonary edema, pulmonary embolism, pneumonia, chronic obstructive pulmonary disease, asthma, and pneumothorax yield specific profiles. Pulmonary edema, e.g., yields anterior lung rockets associated with lung sliding, making the “B-profile.” The FALLS-protocol adapts the BLUE-protocol to acute circulatory failure. It makes sequential search for obstructive, cardiogenic, hypovolemic, and distributive shock using simple real-time echocardiography (right ventricle dilatation, pericardial effusion), then lung ultrasound for assessing a direct parameter of clinical volemia: the apparition of B-lines, schematically, is considered as the endpoint for fluid therapy. Other aims of lung ultrasound are decreasing medical irradiation: the LUCIFLR program (most CTs in ARDS or trauma can be postponed), a use in traumatology, intensive care unit, neonates (the signs are the same than in adults), many disciplines (pulmonology, cardiology…), austere countries, and a help in any procedure (thoracentesis). A 1992, cost-effective gray-scale unit, without Doppler, and a microconvex probe are efficient. Lung ultrasound is a holistic discipline for many reasons (e.g., one probe, perfect for the lung, is able to scan the whole-body). Its integration can provide a new definition of priorities. The BLUE-protocol and FALLS-protocol allow simplification of expert echocardiography, a clear advantage when correct cardiac windows are missing.
                Bookmark

                Author and article information

                Contributors
                Journal
                Can Respir J
                Can. Respir. J
                CRJ
                Canadian Respiratory Journal
                Hindawi
                1198-2241
                1916-7245
                2019
                3 December 2019
                : 2019
                : 5271982
                Affiliations
                1Department of Radiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
                2Students Research Committee, Zabol University of Medical Sciences, Zabol, Iran
                Author notes

                Academic Editor: Pierachille Santus

                Author information
                https://orcid.org/0000-0001-5508-8669
                Article
                10.1155/2019/5271982
                6942780
                31933707
                55ac8ad8-856a-47a6-8153-c2c17a46093a
                Copyright © 2019 Hamid Dahmarde et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 May 2019
                : 16 October 2019
                Categories
                Review Article

                Comments

                Comment on this article