9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Everolimus Retards Cyst Growth and Preserves Kidney Function in a Rodent Model for Polycystic Kidney Disease

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Rapamycin inhibits cyst growth in polycystic kidney disease by targeting the mammalian target of rapamycin (mTOR). To determine if this is a class effect of the mTOR inhibitors, we examined the effect of everolimus, the analogue of rapamycin, on disease progression in the Han:SPRD rat model of polycystic kidney disease. Methods: Four-week-old male heterozygous cystic (Cy/+) and wild-type normal (+/+) Han:SPRD rats were administered everolimus or vehicle (3 mg/kg/day) by gavage for 5 weeks. Kidney function and whole-blood trough levels of everolimus were monitored. After treatment kidney weight and cyst volume density were assessed. Tubule epithelial cell proliferation was assessed by BrdU staining. Results: Everolimus trough levels between 5 and 7 µg/l were sufficient to significantly reduce kidney and cyst volume density by approximately 50 and 40%, respectively. The steady decrease of kidney function in Cy/+ rats was reduced by 30% compared with vehicle-treated Cy/+ rats. Everolimus treatment markedly reduced the number of 5-bromo-2-deoxyuridine-labeled nuclei in cyst epithelia. Body weight gain and kidney function were impaired in everolimus-treated wild-type rats. Conclusion: Moderate dosage of everolimus inhibits cystogenesis in Han:SPRD rats. The inhibitory effect of everolimus appears to represent a class effect of mTOR inhibitors.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease.

          Autosomal-dominant polycystic kidney disease (ADPKD) is a common genetic disorder that frequently leads to renal failure. Mutations in polycystin-1 (PC1) underlie most cases of ADPKD, but the function of PC1 has remained poorly understood. No preventive treatment for this disease is available. Here, we show that the cytoplasmic tail of PC1 interacts with tuberin, and the mTOR pathway is inappropriately activated in cyst-lining epithelial cells in human ADPKD patients and mouse models. Rapamycin, an inhibitor of mTOR, is highly effective in reducing renal cystogenesis in two independent mouse models of PKD. Treatment of human ADPKD transplant-recipient patients with rapamycin results in a significant reduction in native polycystic kidney size. These results indicate that PC1 has an important function in the regulation of the mTOR pathway and that this pathway provides a target for medical therapy of ADPKD.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Polycystic kidney disease.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease.

              Increased tubular epithelial cell proliferation is a prerequisite for cyst formation and expansion in polycystic kidney disease (PKD). Rapamycin is a potent antiproliferative agent. The aim of the present study was to determine the effect of rapamycin on tubular cell proliferation, cyst formation, and renal failure in the Han:SPRD rat model of PKD. Heterozygous (Cy/+) and littermate control (+/+) male rats were weaned at 3 wk of age and then treated with rapamycin 0.2 mg/kg per d intraperitoneally or vehicle (ethanol) for 5 wk. Vehicle-treated Cy/+ rats had a more than doubling of kidney size compared with +/+ rats. Rapamycin reduced the kidney enlargement by 65%. Rapamycin significantly reduced the cyst volume density in Cy/+ rats by >40%. Blood urea nitrogen was 59% increased in vehicle-treated Cy/+ rats compared with +/+ rats. Rapamycin reduced the blood urea nitrogen to normal in Cy/+ rats. The number of proliferating cell nuclear antigen (PCNA)-positive cells per noncystic tubule was eightfold increased in vehicle-treated Cy/+ compared with +/+ rats. Rapamycin significantly reduced the number of PCNA-positive cells in noncystic tubules of Cy/+ rats. In addition, the number of PCNA-positive cells per cyst in Cy/+ rats was significantly reduced by rapamycin. In summary, in a rat model of PKD, rapamycin treatment (1) decreases proliferation in cystic and noncystic tubules, (2) markedly inhibits renal enlargement and cystogenesis, and (3) prevents the loss of kidney function.
                Bookmark

                Author and article information

                Journal
                KBR
                Kidney Blood Press Res
                10.1159/issn.1420-4096
                Kidney and Blood Pressure Research
                S. Karger AG
                1420-4096
                1423-0143
                2007
                July 2007
                27 June 2007
                : 30
                : 4
                : 253-259
                Affiliations
                aPhysiological Institute and bAnatomical Institute, University Zürich Irchel, and cClinic for Nephrology, University Hospital, Zürich, Switzerland
                Article
                104818 Kidney Blood Press Res 2007;30:253–259
                10.1159/000104818
                17596700
                55ac8d01-6f10-4c84-afce-c1e09a4828b9
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 19 April 2007
                : 18 May 2007
                Page count
                Figures: 6, References: 23, Pages: 7
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Han:SPRD rat,Polycystic kidney disease,Everolimus,mTOR
                Cardiovascular Medicine, Nephrology
                Han:SPRD rat, Polycystic kidney disease, Everolimus, mTOR

                Comments

                Comment on this article