11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unravelling the complex drug–drug interactions of the cardiovascular drugs, verapamil and digoxin, with P-glycoprotein

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          P-glycoprotein (Pgp) plays a major role in promoting drug–drug interactions (DDIs) with verapamil and digoxin. In the present study, we present a comprehensive molecular and mechanistic model of Pgp DDIs encompassing drug binding, ATP hydrolysis, transport and conformational changes.

          Abstract

          Drug–drug interactions (DDIs) and associated toxicity from cardiovascular drugs represents a major problem for effective co-administration of cardiovascular therapeutics. A significant amount of drug toxicity from DDIs occurs because of drug interactions and multiple cardiovascular drug binding to the efflux transporter P-glycoprotein (Pgp), which is particularly problematic for cardiovascular drugs because of their relatively low therapeutic indexes. The calcium channel antagonist, verapamil and the cardiac glycoside, digoxin, exhibit DDIs with Pgp through non-competitive inhibition of digoxin transport, which leads to elevated digoxin plasma concentrations and digoxin toxicity. In the present study, verapamil-induced ATPase activation kinetics were biphasic implying at least two verapamil-binding sites on Pgp, whereas monophasic digoxin activation of Pgp-coupled ATPase kinetics suggested a single digoxin-binding site. Using intrinsic protein fluorescence and the saturation transfer double difference (STDD) NMR techniques to probe drug–Pgp interactions, verapamil was found to have little effect on digoxin–Pgp interactions at low concentrations of verapamil, which is consistent with simultaneous binding of the drugs and non-competitive inhibition. Higher concentrations of verapamil caused significant disruption of digoxin–Pgp interactions that suggested overlapping and competing drug-binding sites. These interactions correlated to drug-induced conformational changes deduced from acrylamide quenching of Pgp tryptophan fluorescence. Also, Pgp-coupled ATPase activity kinetics measured with a range of verapamil and digoxin concentrations fit well to a DDI model encompassing non-competitive and competitive inhibition of digoxin by verapamil. The results and previous transport studies were combined into a comprehensive model of verapamil–digoxin DDIs encompassing drug binding, ATP hydrolysis, transport and conformational changes.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs.

          Self-assembled phospholipid bilayer Nanodiscs have become an important and versatile tool among model membrane systems to functionally reconstitute membrane proteins. Nanodiscs consist of lipid domains encased within an engineered derivative of apolipoprotein A-1 scaffold proteins, which can be tailored to yield homogeneous preparations of disks with different diameters, and with epitope tags for exploitation in various purification strategies. A critical aspect of the self-assembly of target membranes into Nanodiscs lies in the optimization of the lipid:protein ratio. Here we describe strategies for performing this optimization and provide examples for reconstituting bacteriorhodopsin as a trimer, rhodopsin, and functionally active P-glycoprotein. Together, these demonstrate the versatility of Nanodisc technology for preparing monodisperse samples of membrane proteins of wide-ranging structure.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reconstitution of membrane proteins into liposomes.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The P-glycoprotein transport system and cardiovascular drugs.

              Permeability glycoprotein (P-gp) mediates the export of drugs from cells located in the small intestine, blood-brain barrier, hepatocytes, and kidney proximal tubule, serving a protective function for the body against foreign substances. Intestinal absorption, biliary excretion, and urinary excretion of P-gp substrates can therefore be altered by either the inhibition or induction of P-gp. A wide spectrum of drugs, such as anticancer agents and steroids, are known P-gp substrates and/or inhibitors, and many cardiovascular drugs have recently been observed to have clinically relevant interactions as well. We review the interactions among commonly prescribed cardiovascular drugs that are P-gp substrates and observe interactions involving P-gp that may be relevant to clinical practice. Cardiovascular drugs with narrow therapeutic indexes (e.g., antiarrhythmic agents, anticoagulant agents) have demonstrated large increases in concentrations when coadministered with potent P-gp inhibitors, thus increasing the risk for drug toxicity. Therefore, dose adjustment or use of alternative agents should be considered when strong P-gp-mediated drug-drug interactions are present. Finally, interactions between novel drugs and known P-gp inhibitors are now being systematically evaluated during drug development, and recommended guidelines for the administration of P-gp substrate drugs will be expanded. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Biosci Rep
                Biosci. Rep
                ppbioscirep
                BSR
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                27 January 2016
                16 March 2016
                April 2016
                : 36
                : 2 ( displayID: 2 )
                : e00309
                Affiliations
                [* ]Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, U.S.A.
                Author notes
                [ 1 ]To whom the correspondence should be addressed (email audie@ 123456uga.edu ).
                Article
                e00309
                10.1042/BSR20150317
                4793304
                26823559
                55cbc89b-fc66-4a37-833c-88d9153d5d36
                © 2016 Authors

                This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution Licence 3.0.

                History
                : 21 December 2015
                : 21 December 2015
                : 22 January 2016
                Page count
                Figures: 7, Equations: 5, References: 103, Pages: 14
                Categories
                Original Papers
                Original Paper

                Life sciences
                abc transporter,cardiovascular,drug transport,fluorescence,nmr
                Life sciences
                abc transporter, cardiovascular, drug transport, fluorescence, nmr

                Comments

                Comment on this article