17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Diagnosis tool for plant and crop N status in vegetative stage

      , ,
      European Journal of Agronomy
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            N uptake and distribution in crops: an agronomical and ecophysiological perspective.

            The rate of N uptake of crops is highly variable during crop development and between years and sites. However, under ample soil N availability, crop N accumulation is highly related to crop growth rate and to biomass accumulation. Critical N concentration has been defined as the minimum N concentration which allows maximum growth rate. Critical N concentration declines during crop growth. The relationship between critical N concentration and biomass accumulation over the growth period of a crop is broadly similar within major C(3) and C(4) cultivated species. Therefore, the critical N concentration concept is widely used in agronomy as the basis of the diagnosis of crop N status, and allows discrimination between situations of sub-optimal and supra-optimal N supply. The relationship between N and biomass accumulation in crops, relies on the interregulation of multiple crop physiological processes. Among these processes, N uptake, crop C assimilation and thus growth rate, and C and N allocation between organs and between plants, play a particular role. Under sub-optimal N supply, N uptake of the crop depends on soil mineral N availability and distribution, and on root distribution. Under ample N supply, N uptake largely depends on growth rate via internal plant regulation. Carbon assimilation of the crop is related to crop N through the distribution of N between mature leaves with consequences for leaf and canopy photosynthesis. However, although less commonly emphasized, carbon assimilation of the crop also depends on crop N through leaf area development. Therefore, crop growth rate fundamentally relies on the balance of N allocation between growing and mature leaves. Nitrogen uptake and distribution also depends on C allocation between organs and N composition of these organs. Within shoots, allocation of C to stems generally increases in relation to C allocation to the leaves over the crop growth period. Allocation of C and N between shoots and roots also changes to a large extent in relation to soil N and/or crop N. These alterations in C and N allocation between plant organs have implications, together with soil availability and carbon assimilation, on N uptake and distribution in crops. Therefore, N uptake and distribution in plants and crops involves many aspects of growth and development. Regulation of nitrogen assimilation needs to be considered in the context of these interregulatory processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon and nitrogen economy of 24 wild species differing in relative growth rate.

              The relation between interspecific variation in relative growth rate and carbon and nitrogen economy was investigated. Twentyfour wild species were grown in a growth chamber with a nonlimiting nutrient supply and growth, whole plant photosynthesis, shoot respiration, and root respiration were determined. No correlation was found between the relative growth rate of these species and their rate of photosynthesis expressed on a leaf area basis. There was a positive correlation, however, with the rate of photosynthesis expressed per unit leaf dry weight. Also the rates of shoot and root respiration per unit dry weight correlated positively with relative growth rate. Due to a higher ratio between leaf area and plant weight (leaf area ratio) fast growing species were able to fix relatively more carbon per unit plant weight and used proportionally less of the total amount of assimilates in respiration. Fast growing species had a higher total organic nitrogen concentration per unit plant weight, allocated more nitrogen to the leaves and had a higher photosynthetic nitrogen-use efficiency, i.e. a higher rate of photosynthesis per unit organic nitrogen in the leaves. Consequently, their nitrogen productivity, the growth rate per unit organic nitrogen in the plant and per day, was higher compared with that of slow growing species.
                Bookmark

                Author and article information

                Journal
                European Journal of Agronomy
                European Journal of Agronomy
                Elsevier BV
                11610301
                May 2008
                May 2008
                : 28
                : 4
                : 614-624
                Article
                10.1016/j.eja.2008.01.005
                55d04206-bf4e-4ba9-a83d-72caeaab4599
                © 2008

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article