7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biomechanical Behavior of the Temporomandibular Joint Disc

      1 , 2 , 1 , 2
      Critical Reviews in Oral Biology & Medicine
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Matrix proteoglycans: from molecular design to cellular function.

          R Iozzo (1998)
          The proteoglycan superfamily now contains more than 30 full-time molecules that fulfill a variety of biological functions. Proteoglycans act as tissue organizers, influence cell growth and the maturation of specialized tissues, play a role as biological filters and modulate growth-factor activities, regulate collagen fibrillogenesis and skin tensile strength, affect tumor cell growth and invasion, and influence corneal transparency and neurite outgrowth. Additional roles, derived from studies of mutant animals, indicate that certain proteoglycans are essential to life whereas others might be redundant. The review focuses on the most recent genetic and molecular biological studies of the matrix proteoglycans, broadly defined as proteoglycans secreted into the pericellular matrix. Special emphasis is placed on the molecular organization of the protein core, the utilization of protein modules, the gene structure and transcriptional control, and the functional roles of the various proteoglycans. When possible, proteoglycans have been grouped into distinct gene families and subfamilies offering a simplified nomenclature based on their protein core design. The structure-function relationship of some paradigmatic proteoglycans is discussed in depth and novel aspects of their biology are examined.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fluid transport and mechanical properties of articular cartilage: A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression.

              Interstitial fluid pressurization has long been hypothesized to play a fundamental role in the load support mechanism and frictional response of articular cartilage. However, to date, few experimental studies have been performed to verify this hypothesis from direct measurements. The first objective of this study was to investigate experimentally the hypothesis that cartilage interstitial fluid pressurization does support the great majority of the applied load, in the testing configurations of confined compression creep and stress relaxation. The second objective was to investigate the hypothesis that the experimentally observed interstitial fluid pressurization could also be predicted using the linear biphasic theory of Mow et al. (J. Biomech. Engng ASME, 102, 73-84, 1980). Fourteen bovine cartilage samples were tested in a confined compression chamber fitted with a microchip piezoresistive transducer to measure interstitial fluid pressure, while simultaneously measuring (during stress relaxation) or prescribing (during creep) the total stress. It was found that interstitial fluid pressure supported more than 90% of the total stress for durations as long as 725 +/- 248 s during stress relaxation (mean +/- S.D., n = 7), and 404 +/- 229 s during creep (n = 7). When comparing experimental measurements of the time-varying interstitial fluid pressure against predictions from the linear biphasic theory, nonlinear coefficients of determination r2 = 0.871 +/- 0.086 (stress relaxation) and r2 = 0.941 +/- 0.061 (creep) were found. The results of this study provide some of the most direct evidence to date that interstitial fluid pressurization plays a fundamental role in cartilage mechanics; they also indicate that the mechanism of fluid load support in cartilage can be properly predicted from theory.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Oral Biology & Medicine
                Critical Reviews in Oral Biology & Medicine
                SAGE Publications
                1045-4411
                1544-1113
                December 2016
                March 2003
                December 2016
                March 2003
                : 14
                : 2
                : 138-150
                Affiliations
                [1 ]Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; and
                [2 ]Department of Functional Anatomy, Academic Center for Dentistry Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
                Article
                10.1177/154411130301400207
                12764076
                561871f1-8f40-4aa5-b839-6828b7bfcab3
                © 2003

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article