9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Glymphatic Hypothesis of Glaucoma: A Unifying Concept Incorporating Vascular, Biomechanical, and Biochemical Aspects of the Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pathophysiology of primary open-angle glaucoma is still largely unknown, although a joint contribution of vascular, biomechanical, and biochemical factors is widely acknowledged. Since glaucoma is a leading cause of irreversible blindness worldwide, exploring its underlying pathophysiological mechanisms is extremely important and challenging. Evidence from recent studies appears supportive of the hypothesis that a “glymphatic system” exists in the eye and optic nerve, analogous to the described “glymphatic system” in the brain. As discussed in the present paper, elucidation of a glymphatic clearance pathway in the eye could provide a new unifying hypothesis of glaucoma that can incorporate many aspects of the vascular, biomechanical, and biochemical theories of the disease. It should be stressed, however, that the few research data currently available cannot be considered as proof of the existence of an “ocular glymphatic system” and that much more studies are needed to validate this possibility. Even though nothing conclusive can yet be said, the recent reports suggesting a paravascular transport system in the eye and optic nerve are encouraging and, if confirmed, may offer new perspectives for the development of novel diagnostic and therapeutic strategies for this devastating disorder.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Global data on visual impairment in the year 2002.

          This paper presents estimates of the prevalence of visual impairment and its causes in 2002, based on the best available evidence derived from recent studies. Estimates were determined from data on low vision and blindness as defined in the International statistical classification of diseases, injuries and causes of death, 10th revision. The number of people with visual impairment worldwide in 2002 was in excess of 161 million, of whom about 37 million were blind. The burden of visual impairment is not distributed uniformly throughout the world: the least developed regions carry the largest share. Visual impairment is also unequally distributed across age groups, being largely confined to adults 50 years of age and older. A distribution imbalance is also found with regard to gender throughout the world: females have a significantly higher risk of having visual impairment than males. Notwithstanding the progress in surgical intervention that has been made in many countries over the last few decades, cataract remains the leading cause of visual impairment in all regions of the world, except in the most developed countries. Other major causes of visual impairment are, in order of importance, glaucoma, age-related macular degeneration, diabetic retinopathy and trachoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The impact of ocular blood flow in glaucoma.

            Two principal theories for the pathogenesis of glaucomatous optic neuropathy (GON) have been described--a mechanical and a vascular theory. Both have been defended by various research groups over the past 150 years. According to the mechanical theory, increased intraocular pressure (IOP) causes stretching of the laminar beams and damage to retinal ganglion cell axons. The vascular theory of glaucoma considers GON as a consequence of insufficient blood supply due to either increased IOP or other risk factors reducing ocular blood flow (OBF). A number of conditions such as congenital glaucoma, angle-closure glaucoma or secondary glaucomas clearly show that increased IOP is sufficient to lead to GON. However, a number of observations such as the existence of normal-tension glaucoma cannot be satisfactorily explained by a pressure theory alone. Indeed, the vast majority of published studies dealing with blood flow report a reduced ocular perfusion in glaucoma patients compared with normal subjects. The fact that the reduction of OBF often precedes the damage and blood flow can also be reduced in other parts of the body of glaucoma patients, indicate that the hemodynamic alterations may at least partially be primary. The major cause of this reduction is not atherosclerosis, but rather a vascular dysregulation, leading to both low perfusion pressure and insufficient autoregulation. This in turn may lead to unstable ocular perfusion and thereby to ischemia and reperfusion damage. This review discusses the potential role of OBF in glaucoma and how a disturbance of OBF could increase the optic nerve's sensitivity to IOP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A new look at cerebrospinal fluid circulation

              According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2017
                29 August 2017
                : 2017
                : 5123148
                Affiliations
                1Department of Psychiatry, PC Sint-Amandus, Beernem, Belgium
                2Department of Ophthalmology, Antwerp University Hospital, Antwerp, Belgium
                3Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Department of Biomedical Sciences, Antwerp, Belgium
                4Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
                5Department of Psychiatry, Ghent University Hospital, Ghent, Belgium
                6Department of Ophthalmology, Kantonsspital Aarau, Aarau, Switzerland
                7Department of Neurology and Memory Clinic, Middelheim General Hospital (ZNA), Antwerp, Belgium
                Author notes

                Academic Editor: John H. Zhang

                Author information
                http://orcid.org/0000-0001-7726-9751
                Article
                10.1155/2017/5123148
                5602488
                28948167
                56404c0e-4b3f-4235-8157-0316d6c5527a
                Copyright © 2017 Peter Wostyn et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 May 2017
                : 1 August 2017
                Categories
                Review Article

                Comments

                Comment on this article