3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Processed foods and food reward

      ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Self-control in decision-making involves modulation of the vmPFC valuation system.

          Every day, individuals make dozens of choices between an alternative with higher overall value and a more tempting but ultimately inferior option. Optimal decision-making requires self-control. We propose two hypotheses about the neurobiology of self-control: (i) Goal-directed decisions have their basis in a common value signal encoded in ventromedial prefrontal cortex (vmPFC), and (ii) exercising self-control involves the modulation of this value signal by dorsolateral prefrontal cortex (DLPFC). We used functional magnetic resonance imaging to monitor brain activity while dieters engaged in real decisions about food consumption. Activity in vmPFC was correlated with goal values regardless of the amount of self-control. It incorporated both taste and health in self-controllers but only taste in non-self-controllers. Activity in DLPFC increased when subjects exercised self-control and correlated with activity in vmPFC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making.

            An essential feature of choice is the assignment of goal values (GVs) to the different options under consideration at the time of decision making. This computation is done when choosing among appetitive and aversive items. Several groups have studied the location of GV computations for appetitive stimuli, but the problem of valuation in aversive contexts at the time of decision making has been ignored. Thus, although dissociations between appetitive and aversive components of value signals have been shown in other domains such as anticipatory and outcome values, it is not known whether appetitive and aversive GVs are computed in similar brain regions or in separate ones. We investigated this question using two different functional magnetic resonance imaging studies while human subjects placed real bids in an economic auction for the right to eat/avoid eating liked/disliked foods. We found that activity in a common area of the medial orbitofrontal cortex and the dorsolateral prefrontal cortex correlated with both appetitive and aversive GVs. These findings suggest that these regions might form part of a common network.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic regulation of brain response to food cues.

              Identification of energy sources depends upon the ability to form associations between food cues and nutritional value. As such, cues previously paired with calories elicit neuronal activation in the nucleus accumbens (NAcc), which reflects the reinforcing value of food. The identity of the physiological signals regulating this response remains elusive. Using fMRI, we examined brain response to noncaloric versions of flavors that had been consumed in previous days with either 0 or 112.5 calories from undetected maltodextrin. We report a small but perceptually meaningful increase in liking for the flavor that had been paired with calories and find that change in liking was associated with changes in insular responses to this beverage. In contrast, NAcc and hypothalamic response to the calorie-paired flavor was unrelated to liking but was strongly associated with the changes in plasma glucose levels produced by ingestion of the beverage when consumed previously with calories. Importantly, because each participant ingested the same caloric dose, the change in plasma glucose depended upon individual differences in glucose metabolism. We conclude that glucose metabolism is a critical signal regulating NAcc and hypothalamic response to food cues, and that this process operates independently from the ability of calories to condition liking.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                January 24 2019
                January 25 2019
                January 24 2019
                January 25 2019
                : 363
                : 6425
                : 346-347
                Article
                10.1126/science.aav0556
                30679360
                5664c541-1ce0-4f1a-a6f3-fed3211536bc
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article