22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploiting EST databases for the development and characterisation of 3425 gene-tagged CISP markers in biofuel crop sugarcane and their transferability in cereals and orphan tropical grasses

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sugarcane is an important cash crop, providing 70% of the global raw sugar as well as raw material for biofuel production. Genetic analysis is hindered in sugarcane because of its large and complex polyploid genome and lack of sufficiently informative gene-tagged markers. Modern genomics has produced large amount of ESTs, which can be exploited to develop molecular markers based on comparative analysis with EST datasets of related crops and whole rice genome sequence, and accentuate their cross-technical functionality in orphan crops like tropical grasses.

          Findings

          Utilising 246,180 Saccharum officinarum EST sequences vis- à- vis its comparative analysis with ESTs of sorghum and barley and the whole rice genome sequence, we have developed 3425 novel gene-tagged markers — namely, conserved-intron scanning primers (CISP) — using the web program GeMprospector. Rice orthologue annotation results indicated homology of 1096 sequences with expressed proteins, 491 with hypothetical proteins. The remaining 1838 were miscellaneous in nature. A total of 367 primer-pairs were tested in diverse panel of samples. The data indicate amplification of 41% polymorphic bands leading to 0.52 PIC and 3.50 MI with a set of sugarcane varieties and Saccharum species. In addition, a moderate technical functionality of a set of such markers with orphan tropical grasses (22%) and fodder cum cereal oat (33%) is observed.

          Conclusions

          Developed gene-tagged CISP markers exhibited considerable technical functionality with varieties of sugarcane and unexplored species of tropical grasses. These markers would thus be particularly useful in identifying the economical traits in sugarcane and developing conservation strategies for orphan tropical grasses.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The Sorghum bicolor genome and the diversification of grasses.

          Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum.

            Analysis of a sugarcane (Saccharum spp.) EST (expressed sequence tag) library of 8678 sequences revealed approximately 250 microsatellite or simple sequence repeats (SSRs) sequences. A diversity of dinucleotide and trinucleotide SSR repeat motifs were present although most were of the (CGG)(n) trinucleotide motif. Primer sets were designed for 35 sequences and tested on five sugarcane genotypes. Twenty-one primer pairs produced a PCR product and 17 pairs were polymorphic. Primer pairs that produced polymorphisms were mainly located in the coding sequence with only a single pair located within the 5' untranslated region. No primer pairs producing a polymorphic product were found in the 3' untranslated region. The level of polymorphism (PIC value) in cultivars detected by these SSRs was low in sugarcane (0.23). However, a subset of these markers showed a significantly higher level of polymorphism when applied to progenitor and related genera (Erianthus sp. and Sorghum sp.). By contrast, SSRs isolated from sugarcane genomic libraries amplify more readily, show high levels of polymorphism within sugarcane with a higher PIC value (0.72) but do not transfer to related species or genera well.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sugarcane genomics: depicting the complex genome of an important tropical crop.

              In the past few years, approaches such as molecular cytogenetics and the use of molecular markers have permitted significant advances in the establishment of the evolutionary origin and genome structure of sugarcane, an important polyploid crop. The availability of new resources, such as a bacterial artificial chromosome library and a huge collection of expressed sequence tags, has opened the gateway to promising functional analyses on a genomic scale.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Res Notes
                BMC Res Notes
                BMC Research Notes
                BioMed Central
                1756-0500
                2013
                4 February 2013
                : 6
                : 47
                Affiliations
                [1 ]Division of Plant Physiology and Biochemistry, Indian Institute of Sugarcane Research, Rae Bareli Road, 226002, Lucknow, Uttar Pradesh, India
                [2 ]Indian Grassland and Fodder Research Institute, Gwalior Road, 284003, Jhansi, Uttar Pradesh, India
                Article
                1756-0500-6-47
                10.1186/1756-0500-6-47
                3598963
                23379891
                568c288c-9d28-4e88-8188-049ec48ddf05
                Copyright ©2013 Chandra et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 September 2012
                : 30 January 2013
                Categories
                Short Report

                Medicine
                conserved-intron scanning primers,sugarcane,tropical grasses,oat,gene annotation,gene-tagged markers

                Comments

                Comment on this article