6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Shifts in the meso- and bathypelagic archaea communities composition during recovery and short-term handling of decompressed deep-sea samples.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dark ocean microbial communities are actively involved in chemoautotrophic and anaplerotic fixation of bicarbonate. Thus, aphotic pelagic realm of the ocean might represent a significant sink of CO2 and source of primary production. However, the estimated metabolic activities in the dark ocean are fraught with uncertainties. Typically, deep-sea samples are recovered to the sea surface for downstream processing on deck. Shifts in ambient settings, associated with such treatments, can likely change the metabolic activity and community structure of deep-sea adapted autochthonous microbial populations. To estimate influence of recovery and short-term handling of deep-sea samples, we monitored the succession of bathypelagic microbial community during its 3 days long on deck incubation. We demonstrated that at the end of exposition, the deep-sea archaeal population decreased threefold, whereas the bacterial fraction doubled in size. As revealed by phylogenetic analyses of amoA gene transcripts, dominance of the active ammonium-oxidizing bathypelagic Thaumarchaeota groups shifted over time very fast. These findings demonstrated the simultaneous existence of various 'deep-sea ecotypes', differentially reacting to the sampling and downstream handling. Our study supports the hypothesis that metabolically active members of meso- and bathypelagic Thaumarchaeota possess the habitat-specific distribution, metabolic complexity and genetic divergence at subpopulation level.

          Related collections

          Author and article information

          Journal
          Environ Microbiol Rep
          Environmental microbiology reports
          Wiley-Blackwell
          1758-2229
          1758-2229
          Jun 2015
          : 7
          : 3
          Affiliations
          [1 ] Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy.
          [2 ] Mediterranean Science Commission (CIESM), 16 bd de Suisse, Monte Carlo, 98000, Monaco.
          Article
          10.1111/1758-2229.12272
          25682761
          56ae5d5d-a734-455a-b076-5dea2095c3e8
          History

          Comments

          Comment on this article