13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiomyopathy Associated with Diabetes: The Central Role of the Cardiomyocyte

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The term diabetic cardiomyopathy (DCM) labels an abnormal cardiac structure and performance due to intrinsic heart muscle malfunction, independently of other vascular co-morbidity. DCM, accounting for 50%–80% of deaths in diabetic patients, represents a worldwide problem for human health and related economics. Optimal glycemic control is not sufficient to prevent DCM, which derives from heart remodeling and geometrical changes, with both consequences of critical events initially occurring at the cardiomyocyte level. Cardiac cells, under hyperglycemia, very early undergo metabolic abnormalities and contribute to T helper (Th)-driven inflammatory perturbation, behaving as immunoactive units capable of releasing critical biomediators, such as cytokines and chemokines. This paper aims to focus onto the role of cardiomyocytes, no longer considered as “passive” targets but as “active” units participating in the inflammatory dialogue between local and systemic counterparts underlying DCM development and maintenance. Some of the main biomolecular/metabolic/inflammatory processes triggered within cardiac cells by high glucose are overviewed; particular attention is addressed to early inflammatory cytokines and chemokines, representing potential therapeutic targets for a prompt early intervention when no signs or symptoms of DCM are manifesting yet. DCM clinical management still represents a challenge and further translational investigations, including studies at female/male cell level, are warranted.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Myocardial fatty acid metabolism in health and disease.

          There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetes primes neutrophils to undergo NETosis, which impairs wound healing.

            Wound healing is impaired in diabetes, resulting in significant morbidity and mortality. Neutrophils are the main leukocytes involved in the early phase of healing. As part of their anti-microbial defense, neutrophils form extracellular traps (NETs) by releasing decondensed chromatin lined with cytotoxic proteins. NETs, however, can also induce tissue damage. Here we show that neutrophils isolated from type 1 and type 2 diabetic humans and mice were primed to produce NETs (a process termed NETosis). Expression of peptidylarginine deiminase 4 (PAD4, encoded by Padi4 in mice), an enzyme important in chromatin decondensation, was elevated in neutrophils from individuals with diabetes. When subjected to excisional skin wounds, wild-type (WT) mice produced large quantities of NETs in wounds, but this was not observed in Padi4(-/-) mice. In diabetic mice, higher levels of citrullinated histone H3 (H3Cit, a NET marker) were found in their wounds than in normoglycemic mice and healing was delayed. Wound healing was accelerated in Padi4(-/-) mice as compared to WT mice, and it was not compromised by diabetes. DNase 1, which disrupts NETs, accelerated wound healing in diabetic and normoglycemic WT mice. Thus, NETs impair wound healing, particularly in diabetes, in which neutrophils are more susceptible to NETosis. Inhibiting NETosis or cleaving NETs may improve wound healing and reduce NET-driven chronic inflammation in diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Old, new and emerging functions of caspases.

              Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                05 July 2019
                July 2019
                : 20
                : 13
                : 3299
                Affiliations
                [1 ]Department of Experimental Medicine, “Sapienza” University, Viale del Policlinico 155, 00161 Rome, Italy
                [2 ]Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti and Pescara, Via dei Vestini 31, 66100 Chieti, Italy
                [3 ]Department of Cardiovascular Sciences, “Sapienza” University, Viale del Policlinico 155, 00161 Rome, Italy
                [4 ]Department of Translational and Precision Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
                [5 ]Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy
                Author notes
                [* ]Correspondence: clara.crescioli@ 123456uniroma4.it ; Tel./Fax: +39-06-36733395
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-3529-2790
                https://orcid.org/0000-0002-4473-4909
                Article
                ijms-20-03299
                10.3390/ijms20133299
                6651183
                31284374
                56e937ea-8848-4b60-851c-19afb6125fe9
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 June 2019
                : 03 July 2019
                Categories
                Review

                Molecular biology
                diabetes,cardiomyopathy,cardiomyocytes,chemokines,inflammation,therapy
                Molecular biology
                diabetes, cardiomyopathy, cardiomyocytes, chemokines, inflammation, therapy

                Comments

                Comment on this article