23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Throughput Gene Expression Analysis Identifies Reliable Expression Markers of Human Corneal Endothelial Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Considerable interest has been generated for the development of suitable corneal endothelial graft alternatives through cell-tissue engineering, which can potentially alleviate the shortage of corneal transplant material. The advent of less invasive suture-less key-hole surgery options such as Descemet’s Stripping Endothelial Keratoplasty (DSEK) and Descemet’s Membrane Endothelial Keratoplasty (DMEK), which involve transplantation of solely the endothelial layer instead of full thickness cornea, provide further impetus for the development of alternative endothelial grafts for clinical applications. A major challenge for this endeavor is the lack of specific markers for this cell type. To identify genes that reliably mark corneal endothelial cells (CECs) in vivo and in vitro, we performed RNA-sequencing on freshly isolated human CECs (from both young and old donors), CEC cultures, and corneal stroma. Gene expression of these corneal cell types was also compared to that of other human tissue types. Based on high throughput comparative gene expression analysis, we identified a panel of markers that are: i) highly expressed in CECs from both young donors and old donors; ii) expressed in CECs in vivo and in vitro; and iii) not expressed in corneal stroma keratocytes and the activated corneal stroma fibroblasts. These were SLC4A11, COL8A2 and CYYR1. The use of this panel of genes in combination reliably ascertains the identity of the CEC cell type.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium

          Protein Analysis THrough Evolutionary Relationships (PANTHER) is a comprehensive software system for inferring the functions of genes based on their evolutionary relationships. Phylogenetic trees of gene families form the basis for PANTHER and these trees are annotated with ontology terms describing the evolution of gene function from ancestral to modern day genes. One of the main applications of PANTHER is in accurate prediction of the functions of uncharacterized genes, based on their evolutionary relationships to genes with functions known from experiment. The PANTHER website, freely available at http://www.pantherdb.org, also includes software tools for analyzing genomic data relative to known and inferred gene functions. Since 2007, there have been several new developments to PANTHER: (i) improved phylogenetic trees, explicitly representing speciation and gene duplication events, (ii) identification of gene orthologs, including least diverged orthologs (best one-to-one pairs), (iii) coverage of more genomes (48 genomes, up to 87% of genes in each genome; see http://www.pantherdb.org/panther/summaryStats.jsp), (iv) improved support for alternative database identifiers for genes, proteins and microarray probes and (v) adoption of the SBGN standard for display of biological pathways. In addition, PANTHER trees are being annotated with gene function as part of the Gene Ontology Reference Genome project, resulting in an increasing number of curated functional annotations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Descemet membrane endothelial keratoplasty (DMEK).

            To describe Descemet membrane endothelial keratoplasty (DMEK) with organ cultured Descemet membrane (DM) in a human cadaver eye model and a patient with Fuchs endothelial dystrophy. In 10 human cadaver eyes and 1 patient eye, a 3.5-mm clear corneal tunnel incision was made. The anterior chamber was filled with air, and the DM was stripped off from the posterior stroma. From organ-cultured donor corneo-scleral rims, 9.0-mm-diameter "DM rolls" were harvested. Each donor DM roll was inserted into a recipient anterior chamber, positioned onto the posterior stroma, and kept in position by completely filling the anterior chamber with air for 30 minutes. In all recipient eyes, the donor DM maintained its position after a 30-minute air-fill of the anterior chamber followed by an air-liquid exchange. In the patient's eye, 1 week after transplantation, best-corrected visual acuity was 1.0 (20/20) with the patient's preoperative refraction, and the endothelial cell density averaged 2350 cells/mm. DMEK may provide quick visual rehabilitation in the treatment of corneal endothelial disorders by transplantation of an organ-cultured DM transplanted through a clear corneal tunnel incision. DMEK may be a highly accessible procedure to corneal surgeons, because donor DM sheets can be prepared from preserved corneo-scleral rims.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Central corneal endothelial cell changes over a ten-year period.

              To obtain longitudinal data to estimate long-term morphometric changes in normal human corneal endothelia. Ten years after an initial study, the authors rephotographed the central corneal endothelium of 52 normal subjects with the same contact specular microscope. The findings for the 10 subjects younger than 18 years of age at the initial examination were considered separately. For the remaining 42 adult subjects, the time between examinations averaged 10.6 +/- 0.2 years (range, 10.1 to 11 years). At the recent examination, these subjects' ages averaged 59.5 +/- 16.8 years (range, 30 to 84 years). Outlines of 100 cells for each cornea were digitized. For the 42 adult subjects, the mean endothelial cell density decreased during the 10.6-year interval from 2715 +/- 301 cells/mm2 to 2539 +/- 284 cells/mm2 (P < 0.001). The calculated exponential cell loss rate over this interval was 0.6% +/- 0.5% per year. There was no statistically significant correlation between cell loss rate and age. During the 10.6-year interval, the coefficient of variation of cell area increased from 0.26 +/- 0.05 to 0.29 +/- 0.06 (P < 0.001), and the percentage of hexagonal cells decreased from 67% +/- 8% to 64% +/- 6% (P = 0.003). For the 10 subjects 5 to 15 years of age at the initial examination, the exponential cell loss rate was 1.1% +/- 0.8% per year. Human central endothelial cell density decreases at an average rate of approximately 0.6% per year in normal corneas throughout adult life, with gradual increases in polymegethism and pleomorphism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                2 July 2013
                : 8
                : 7
                : e67546
                Affiliations
                [1 ]A*STAR Institute of Medical Biology, Singapore, Singapore
                [2 ]Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
                [3 ]Genome Institute of Singapore, Singapore, Singapore
                [4 ]Singapore National Eye Centre, Singapore, Singapore
                [5 ]Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
                University of Bristol, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZC PR JM AC. Performed the experiments: ZC GP WH TC HA KT. Analyzed the data: ZC GP WH PR JM AC. Contributed reagents/materials/analysis tools: JM AC. Wrote the paper: ZC AC.

                Article
                PONE-D-12-36644
                10.1371/journal.pone.0067546
                3699644
                23844023
                575a1eaa-c032-40f9-9fd9-8dcdc3db2e08
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 November 2012
                : 21 May 2013
                Page count
                Pages: 15
                Funding
                This study is supported by Agency for Science, Technology and Research TCRP Grant (TCR0101673). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Computational Biology
                Molecular Genetics
                Gene Identification and Analysis
                Molecular Cell Biology
                Cellular Types
                Endothelial Cells
                Cell Growth
                Gene Expression
                Medicine
                Diagnostic Medicine
                Pathology
                General Pathology
                Biomarkers
                Ophthalmology
                Corneal Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article