15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The genome sequence of segmental allotetraploid peanut Arachis hypogaea

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Nature Genetics
      Springer Nature
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          DAGchainer: a tool for mining segmental genome duplications and synteny.

          Given the positions of protein-coding genes along genomic sequence and probability values for protein alignments between genes, DAGchainer identifies chains of gene pairs sharing conserved order between genomic regions, by identifying paths through a directed acyclic graph (DAG). These chains of collinear gene pairs can represent segmentally duplicated regions and genes within a single genome or syntenic regions between related genomes. Automated mining of the Arabidopsis genome for segmental duplications illustrates the use of DAGchainer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus

            Summary Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-genome duplication as a key factor in crop domestication.

              Polyploidy is commonly thought to be associated with the domestication process because of its concurrence with agriculturally favourable traits and because it is widespread among the major plant crops(1-4). Furthermore, the genetic consequences of polyploidy(5-7) might have increased the adaptive plasticity of those plants, enabling successful domestication(6-8). Nevertheless, a detailed phylogenetic analysis regarding the association of polyploidy with the domestication process, and the temporal order of these distinct events, has been lacking(3). Here, we have gathered a comprehensive data set including dozens of genera, each containing one or more major crop species and for which sufficient sequence and chromosome number data exist. Using probabilistic inference of ploidy levels conducted within a phylogenetic framework, we have examined the incidence of polyploidization events within each genus. We found that domesticated plants have gone through more polyploidy events than their wild relatives, with monocots exhibiting the most profound difference: 54% of the crops are polyploids versus 40% of the wild species. We then examined whether the preponderance of polyploidy among crop species is the result of two, non-mutually-exclusive hypotheses: (1) polyploidy followed by domestication, and (2) domestication followed by polyploidy. We found support for the first hypothesis, whereby polyploid species were more likely to be domesticated than their wild relatives, suggesting that the genetic consequences of polyploidy have conferred genetic preconditions for successful domestication on many of these plants.
                Bookmark

                Author and article information

                Journal
                Nature Genetics
                Nat Genet
                Springer Nature
                1061-4036
                1546-1718
                May 1 2019
                Article
                10.1038/s41588-019-0405-z
                31043755
                57d13301-15c6-46ab-b56c-d813b4f29b49
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article