0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A guide to small-molecule structure assignment through computation of (¹H and ¹³C) NMR chemical shifts.

      Nature protocols

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This protocol is intended to provide chemists who discover or make new organic compounds with a valuable tool for validating the structural assignments of those new chemical entities. Experimental ¹H and/or ¹³C NMR spectral data and its proper interpretation for the compound of interest is required as a starting point. The approach involves the following steps: (i) using molecular mechanics calculations (with, e.g., MacroModel) to generate a library of conformers; (ii) using density functional theory (DFT) calculations (with, e.g., Gaussian 09) to determine optimal geometry, free energies and chemical shifts for each conformer; (iii) determining Boltzmann-weighted proton and carbon chemical shifts; and (iv) comparing the computed chemical shifts for two or more candidate structures with experimental data to determine the best fit. For a typical structure assignment of a small organic molecule (e.g., fewer than ∼10 non-H atoms or up to ∼180 a.m.u. and ∼20 conformers), this protocol can be completed in ∼2 h of active effort over a 2-d period; for more complex molecules (e.g., fewer than ∼30 non-H atoms or up to ∼500 a.m.u. and ∼50 conformers), the protocol requires ∼3-6 h of active effort over a 2-week period. To demonstrate the method, we have chosen the analysis of the cis- versus the trans-diastereoisomers of 3-methylcyclohexanol (1-cis versus 1-trans). The protocol is written in a manner that makes the computation of chemical shifts tractable for chemists who may otherwise have only rudimentary computational experience.

          Related collections

          Author and article information

          Journal
          24556787
          10.1038/nprot.2014.042

          Comments

          Comment on this article

          scite_