3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Ambient Temperature Regulated the Plant Systemic Response to the Beneficial Endophytic Fungus Serendipita indica

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most plants in nature establish symbiotic associations with endophytic fungi in soil. Beneficial endophytic fungi induce a systemic response in the aboveground parts of the host plant, thus promoting the growth and fitness of host plants. Meanwhile, temperature elevation from climate change widely affects global plant biodiversity as well as crop quality and yield. Over the past decades, great progresses have been made in the response of plants to high ambient temperature and to symbiosis with endophytic fungi. However, little is known about their synergistic effect on host plants. The endophytic fungus Serendipita indica colonizes the roots of a wide range of plants, including Arabidopsis. Based on the Arabidopsis- S. indica symbiosis experimental system, we analyzed the synergistic effect of high ambient temperature and endophytic fungal symbiosis on host plants. By transcriptome analysis, we found that DNA replication-related genes were significantly upregulated during the systemic response of Arabidopsis aboveground parts to S. indica colonization. Plant hormones, such as jasmonic acid (JA) and ethylene (ET), play important roles in plant growth and systemic responses. We found that high ambient temperature repressed the JA and ET signaling pathways of Arabidopsis aboveground parts during the systemic response to S. indica colonization in roots. Meanwhile, PIF4 is the central hub transcription factor controlling plant thermosensory growth under high ambient temperature in Arabidopsis. PIF4 is also involving JA and/or ET signaling pathway. We found that PIF4 target genes overlapped with many differentially expressed genes (DEGs) during the systemic response, and further showed that the growth promotion efficiency of S. indica on the pif4 mutant was higher than that on the wild-type plants. In short, our data showed that high ambient temperature strengthened the growth promotion effect of S. indica fungi on the aboveground parts of the host plant Arabidopsis, and the growth promotion effect of the systemic response under high ambient temperature was regulated by PIF4.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Induced systemic resistance by beneficial microbes.

          Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            jvenn: an interactive Venn diagram viewer

            Background Venn diagrams are commonly used to display list comparison. In biology, they are widely used to show the differences between gene lists originating from different differential analyses, for instance. They thus allow the comparison between different experimental conditions or between different methods. However, when the number of input lists exceeds four, the diagram becomes difficult to read. Alternative layouts and dynamic display features can improve its use and its readability. Results jvenn is a new JavaScript library. It processes lists and produces Venn diagrams. It handles up to six input lists and presents results using classical or Edwards-Venn layouts. User interactions can be controlled and customized. Finally, jvenn can easily be embeded in a web page, allowing to have dynamic Venn diagrams. Conclusions jvenn is an open source component for web environments helping scientists to analyze their data. The library package, which comes with full documentation and an example, is freely available at http://bioinfo.genotoul.fr/jvenn.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Growth-defense tradeoffs in plants: a balancing act to optimize fitness.

              Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                16 March 2022
                2022
                : 13
                : 844572
                Affiliations
                [1] 1Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University , Kunming, China
                [2] 2Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University , Kunming, China
                Author notes

                Edited by: Ziqiang Zhu, Nanjing Normal University, China

                Reviewed by: Kai Shu, Northwestern Polytechnical University, China; Xiaoyu Qiang, Northwest A&F University, China

                *Correspondence: Jia-Jia Han, hanjiajia@ 123456ynu.edu.cn

                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2022.844572
                8966885
                35371134
                57f7fe1b-8eea-44a3-a554-1fc53f72028e
                Copyright © 2022 Chen, Yin, Zhu, Xia and Han.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 December 2021
                : 15 February 2022
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 76, Pages: 11, Words: 7022
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                plant systemic response,pif4,serendipita indica,high ambient temperature,endophytic fungus

                Comments

                Comment on this article