6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Supramolecular Polymerization‐Induced Nanoassemblies for Self‐Augmented Cascade Chemotherapy and Chemodynamic Therapy of Tumor

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays

          A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation. The assay detects living, but not dead cells and the signal generated is dependent on the degree of activation of the cells. This method can therefore be used to measure cytotoxicity, proliferation or activation. The results can be read on a multiwell scanning spectrophotometer (ELISA reader) and show a high degree of precision. No washing steps are used in the assay. The main advantages of the colorimetric assay are its rapidity and precision, and the lack of any radioisotope. We have used the assay to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.

            Coating the surface of nanoparticles with polyethylene glycol (PEG), or "PEGylation", is a commonly used approach for improving the efficiency of drug and gene delivery to target cells and tissues. Building from the success of PEGylating proteins to improve systemic circulation time and decrease immunogenicity, the impact of PEG coatings on the fate of systemically administered nanoparticle formulations has, and continues to be, widely studied. PEG coatings on nanoparticles shield the surface from aggregation, opsonization, and phagocytosis, prolonging systemic circulation time. Here, we briefly describe the history of the development of PEGylated nanoparticle formulations for systemic administration, including how factors such as PEG molecular weight, PEG surface density, nanoparticle core properties, and repeated administration impact circulation time. A less frequently discussed topic, we then describe how PEG coatings on nanoparticles have also been utilized for overcoming various biological barriers to efficient drug and gene delivery associated with other modes of administration, ranging from gastrointestinal to ocular. Finally, we describe both methods for PEGylating nanoparticles and methods for characterizing PEG surface density, a key factor in the effectiveness of the PEG surface coating for improving drug and gene delivery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies.

              The median-effect equation derived from the mass-action law principle at equilibrium-steady state via mathematical induction and deduction for different reaction sequences and mechanisms and different types of inhibition has been shown to be the unified theory for the Michaelis-Menten equation, Hill equation, Henderson-Hasselbalch equation, and Scatchard equation. It is shown that dose and effect are interchangeable via defined parameters. This general equation for the single drug effect has been extended to the multiple drug effect equation for n drugs. These equations provide the theoretical basis for the combination index (CI)-isobologram equation that allows quantitative determination of drug interactions, where CI 1 indicate synergism, additive effect, and antagonism, respectively. Based on these algorithms, computer software has been developed to allow automated simulation of synergism and antagonism at all dose or effect levels. It displays the dose-effect curve, median-effect plot, combination index plot, isobologram, dose-reduction index plot, and polygonogram for in vitro or in vivo studies. This theoretical development, experimental design, and computerized data analysis have facilitated dose-effect analysis for single drug evaluation or carcinogen and radiation risk assessment, as well as for drug or other entity combinations in a vast field of disciplines of biomedical sciences. In this review, selected examples of applications are given, and step-by-step examples of experimental designs and real data analysis are also illustrated. The merging of the mass-action law principle with mathematical induction-deduction has been proven to be a unique and effective scientific method for general theory development. The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                1433-7851
                1521-3773
                August 02 2021
                June 27 2021
                August 02 2021
                : 60
                : 32
                : 17570-17578
                Affiliations
                [1 ]State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Science University of Macau Avenida da Universidade Taipa Macau China
                [2 ]MoE Frontiers Science Center for Precision Oncology University of Macau Avenida da Universidade Taipa Macau China
                [3 ]Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing China
                [4 ]Institute of Biomedical Health Technology and Engineering Shenzhen Bay Laboratory Shenzhen China
                [5 ]Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore Singapore
                [6 ]Clinical Imaging Research Centre, Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
                [7 ]Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
                Article
                10.1002/anie.202103721
                580b1172-e829-43a6-b74a-6a8818a9337a
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article