47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS.

          D ARNON (1949)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.

            Cell expansion is a central process in plant morphogenesis, and the elongation of roots and root hairs is essential for uptake of minerals and water from the soil. Ca2+ influx from the extracellular store is required for (and sets the rates of) cell elongation in roots. Arabidopsis thaliana rhd2 mutants are defective in Ca2+ uptake and consequently cell expansion is compromised--rhd2 mutants have short root hairs and stunted roots. To determine the regulation of Ca2+ acquisition in growing root cells we show here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS). We show that ROS accumulate in growing wild-type (WT) root hairs but their levels are markedly decreased in rhd2 mutants. Blocking the activity of the NADPH oxidase with diphenylene iodonium (DPI) inhibits ROS formation and phenocopies Rhd2-. Treatment of rhd2 roots with ROS partly suppresses the mutant phenotype and stimulates the activity of plasma membrane hyperpolarization-activated Ca2+ channels, the predominant root Ca2+ acquisition system. This indicates that NADPH oxidases control development by making ROS that regulate plant cell expansion through the activation of Ca2+ channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rhizosphere bacteria help plants tolerate abiotic stress.

              Plant-growth-promoting rhizobacteria (PGPR) are associated with plant roots and augment plant productivity and immunity; however, recent work by several groups shows that PGPR also elicit so-called 'induced systemic tolerance' to salt and drought. As we discuss here, PGPR might also increase nutrient uptake from soils, thus reducing the need for fertilizers and preventing the accumulation of nitrates and phosphates in agricultural soils. A reduction in fertilizer use would lessen the effects of water contamination from fertilizer run-off and lead to savings for farmers.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2016
                21 January 2016
                : 2016
                : 6284547
                Affiliations
                1Department of Agricultural Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
                2Oilseed Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur 1701, Bangladesh
                3Laboratory of Food Crops, Institute of Tropical Agriculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
                4Department of Agroforestry and Environmental Science, Sher-E-Bangla Agricultural University, Dhaka, Bangladesh
                Author notes
                *Halimi Mohd Saud: halimi@ 123456upm.edu.my

                Academic Editor: Qaisar Mahmood

                Article
                10.1155/2016/6284547
                4756578
                26951880
                58b5ecf0-1505-4746-bd84-639b84262f1e
                Copyright © 2016 Sheikh Hasna Habib et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 September 2015
                : 29 December 2015
                : 30 December 2015
                Categories
                Research Article

                Comments

                Comment on this article