20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes

      , , , , , ,
      Materials Today
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: not found
          • Article: not found

          Dye-sensitized solar cells.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency.

            The iodide/triiodide redox shuttle has limited the efficiencies accessible in dye-sensitized solar cells. Here, we report mesoscopic solar cells that incorporate a Co((II/III))tris(bipyridyl)-based redox electrolyte in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer (designated YD2-o-C8). The specific molecular design of YD2-o-C8 greatly retards the rate of interfacial back electron transfer from the conduction band of the nanocrystalline titanium dioxide film to the oxidized cobalt mediator, which enables attainment of strikingly high photovoltages approaching 1 volt. Because the YD2-o-C8 porphyrin harvests sunlight across the visible spectrum, large photocurrents are generated. Cosensitization of YD2-o-C8 with another organic dye further enhances the performance of the device, leading to a measured power conversion efficiency of 12.3% under simulated air mass 1.5 global sunlight.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells.

              Three spiro-OMeTAD derivatives have been synthesized and characterized by (1)H/(13)C NMR spectroscopy and mass spectrometry. The optical and electronic properties of the derivatives were modified by changing the positions of the two methoxy substituents in each of the quadrants, as monitored by UV-vis spectroscopy and cyclic voltammetry measurements. The derivatives were employed as hole-transporting materials (HTMs), and their performances were compared for the fabrication of mesoporous TiO2/CH3NH3PbI3/HTM/Au solar cells. Surprisingly, the cell performance was dependent on the positions of the OMe substituents. The derivative with o-OMe substituents showed highly improved performance by exhibiting a short-circuit current density of 21.2 mA/cm(2), an open-circuit voltage of 1.02 V, and a fill factor of 77.6% under 1 sun illumination (100 mW/cm(2)), which resulted in an overall power conversion efficiency (PCE) of 16.7%, compared to ~15% for conventional p-OMe substituents. The PCE of 16.7% is the highest value reported to date for perovskite-based solar cells with spiro-OMeTAD.
                Bookmark

                Author and article information

                Journal
                Materials Today
                Materials Today
                Elsevier BV
                13697021
                April 2015
                April 2015
                : 18
                : 3
                : 155-162
                Article
                10.1016/j.mattod.2014.09.001
                58f807e8-9fbd-4dcc-a423-4fc0976ea593
                © 2015
                History

                Comments

                Comment on this article