11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Specific inhibitors of Plasmodium falciparum thioredoxin reductase as potential antimalarial agents.

      Bioorganic & Medicinal Chemistry Letters
      Animals, Antimalarials, chemistry, pharmacology, Chloroquine, Dose-Response Relationship, Drug, Drug Resistance, Humans, Inhibitory Concentration 50, Kinetics, Molecular Structure, Oxidation-Reduction, Plasmodium falciparum, drug effects, enzymology, Quinoxalines, Thioredoxin-Disulfide Reductase, antagonists & inhibitors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmodium falciparum thioredoxin reductase (PfTrxR: NADPH+Trx(S)2+H+<-->NADP++Trx(SH)2) is a high Mr flavin-dependent TrxR that reduces thioredoxin (Trx) via a CysXXXXCys pair located penultimately to the C-terminal Gly. In this respect, PfTrxR differs significantly from its human counterpart which bears a Cys-Sec redox pair at the same position. PfTrxR is essentially involved in antioxidant defense and redox regulation of the parasite and has been previously validated by knock-out studies as a potential drug target for malaria chemotherapy. Moreover, human TrxR is present in most cancer cells at levels tenfold higher than in normal cells. Here we report the discovery of a series of potent inhibitors of PfTrxR. The three most promising inhibitors, 3(IC50(PfTrxR)=2 microM and IC50(hTrxR)=50 microM), 7(IC50(PfTrxR)=2 microM and IC50(hTrxR)=140 microM), and 11(IC50(PfTrxR)=0.5 microM and IC50(hTrxR)=4 microM) were selective for the parasite enzyme. Detailed mechanistic characterization of the effects of these compounds on the PfTrxR-catalyzed reaction showed clear uncompetitive inhibition with respect to both substrate and cofactor. For the most specific PfTrxR inhibitor 7, an alkylation mechanism study based on a thiol conjugation model was performed. Furthermore, all three compounds were active in the lower micromolar range on the chloroquine-resistant P. falciparum strain K1 in vitro.

          Related collections

          Author and article information

          Comments

          Comment on this article