7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Advanced glycosidases as ingenious biosynthetic instruments

      , , , ,
      Biotechnology Advances
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references212

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The carbohydrate-active enzymes database (CAZy) in 2013

          The Carbohydrate-Active Enzymes database (CAZy; http://www.cazy.org) provides online and continuously updated access to a sequence-based family classification linking the sequence to the specificity and 3D structure of the enzymes that assemble, modify and breakdown oligo- and polysaccharides. Functional and 3D structural information is added and curated on a regular basis based on the available literature. In addition to the use of the database by enzymologists seeking curated information on CAZymes, the dissemination of a stable nomenclature for these enzymes is probably a major contribution of CAZy. The past few years have seen the expansion of the CAZy classification scheme to new families, the development of subfamilies in several families and the power of CAZy for the analysis of genomes and metagenomes. This article outlines the changes that have occurred in CAZy during the past 5 years and presents our novel effort to display the resolution and the carbohydrate ligands in crystallographic complexes of CAZymes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human milk oligosaccharides: every baby needs a sugar mama.

            L Bode (2012)
            Human milk oligosaccharides (HMOs) are a family of structurally diverse unconjugated glycans that are highly abundant in and unique to human milk. Originally, HMOs were discovered as a prebiotic "bifidus factor" that serves as a metabolic substrate for desired bacteria and shapes an intestinal microbiota composition with health benefits for the breast-fed neonate. Today, HMOs are known to be more than just "food for bugs". An accumulating body of evidence suggests that HMOs are antiadhesive antimicrobials that serve as soluble decoy receptors, prevent pathogen attachment to infant mucosal surfaces and lower the risk for viral, bacterial and protozoan parasite infections. In addition, HMOs may modulate epithelial and immune cell responses, reduce excessive mucosal leukocyte infiltration and activation, lower the risk for necrotizing enterocolitis and provide the infant with sialic acid as a potentially essential nutrient for brain development and cognition. Most data, however, stem from in vitro, ex vivo or animal studies and occasionally from association studies in mother-infant cohorts. Powered, randomized and controlled intervention studies will be needed to confirm relevance for human neonates. The first part of this review introduces the pioneers in HMO research, outlines HMO structural diversity and describes what is known about HMO biosynthesis in the mother's mammary gland and their metabolism in the breast-fed infant. The second part highlights the postulated beneficial effects of HMO for the breast-fed neonate, compares HMOs with oligosaccharides in the milk of other mammals and in infant formula and summarizes the current roadblocks and future opportunities for HMO research.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Symbol Nomenclature for Graphical Representations of Glycans.

                Bookmark

                Author and article information

                Journal
                Biotechnology Advances
                Biotechnology Advances
                Elsevier BV
                07349750
                July 2021
                July 2021
                : 49
                : 107733
                Article
                10.1016/j.biotechadv.2021.107733
                33781890
                58fc41f6-6501-4035-bcc4-5dd4df3b9739
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article