4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RUNX2-modifying enzymes: therapeutic targets for bone diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RUNX2 is a master transcription factor of osteoblast differentiation. RUNX2 expression in the bone and osteogenic front of a suture is crucial for cranial suture closure and membranous bone morphogenesis. In this manner, the regulation of RUNX2 is precisely controlled by multiple posttranslational modifications (PTMs) mediated by the stepwise recruitment of multiple enzymes. Genetic defects in RUNX2 itself or in its PTM regulatory pathways result in craniofacial malformations. Haploinsufficiency in RUNX2 causes cleidocranial dysplasia (CCD), which is characterized by open fontanelle and hypoplastic clavicles. In contrast, gain-of-function mutations in FGFRs, which are known upstream stimulating signals of RUNX2 activity, cause craniosynostosis (CS) characterized by premature suture obliteration. The identification of these PTM cascades could suggest suitable drug targets for RUNX2 regulation. In this review, we will focus on the mechanism of RUNX2 regulation mediated by PTMs, such as phosphorylation, prolyl isomerization, acetylation, and ubiquitination, and we will summarize the therapeutics associated with each PTM enzyme for the treatment of congenital cranial suture anomalies.

          Regenerative medicine: Manipulating modifications that control bone-building

          Therapies that modulate the activity of the regulatory protein RUNX2 could potentially restore normal bone development in a range of skeletal disorders, and repair damage from injury or degeneration. RUNX2 is an essential regulator of genes that drive formation of bone-producing osteoblast cells. It can be activated or inactivated by the enzymatic addition of various chemical groups. Hyun-Mo Ryoo and colleagues at Seoul National University, South Korea, review the role of such modifications in bone disorders. For example, the loss of modifications activated by RUNX2 can result in delayed integration of the bones that form the skull. The authors highlight potential opportunities to manipulate these modification processes to treat this and other developmental disorders. Similar strategies could also promote repair of fractures or counter osteoporotic bone loss.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: not found
          • Article: not found

          Central dogma of molecular biology.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CRISPR-Cas guides the future of genetic engineering

            The diversity, modularity, and efficacy of CRISPR-Cas systems are driving a biotechnological revolution. RNA-guided Cas enzymes have been adopted as tools to manipulate the genomes of cultured cells, animals, and plants, accelerating the pace of fundamental research and enabling clinical and agricultural breakthroughs. We describe the basic mechanisms that set the CRISPR-Cas toolkit apart from other programmable gene-editing technologies, highlighting the diverse and naturally evolved systems now functionalized as biotechnologies. We discuss the rapidly evolving landscape of CRISPR-Cas applications, from gene editing to transcriptional regulation, imaging, and diagnostics. Continuing functional dissection and an expanding landscape of applications position CRISPR-Cas tools at the cutting edge of nucleic acid manipulation that is rewriting biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts.

              A transcription factor, Cbfa1, which belongs to the runt-domain gene family, is expressed restrictively in fetal development. To elucidate the function of Cbfa1, we generated mice with a mutated Cbfa1 locus. Mice with a homozygous mutation in Cbfa1 died just after birth without breathing. Examination of their skeletal systems showed a complete lack of ossification. Although immature osteoblasts, which expressed alkaline phophatase weakly but not Osteopontin and Osteocalcin, and a few immature osteoclasts appeared at the perichondrial region, neither vascular nor mesenchymal cell invasion was observed in the cartilage. Therefore, our data suggest that both intramembranous and endochondral ossification were completely blocked, owing to the maturational arrest of osteoblasts in the mutant mice, and demonstrate that Cbfa1 plays an essential role in osteogenesis.
                Bookmark

                Author and article information

                Contributors
                hmryoo@snu.ac.kr
                Journal
                Exp Mol Med
                Exp Mol Med
                Experimental & Molecular Medicine
                Nature Publishing Group UK (London )
                1226-3613
                2092-6413
                13 August 2020
                13 August 2020
                August 2020
                : 52
                : 8
                : 1178-1184
                Affiliations
                GRID grid.31501.36, ISNI 0000 0004 0470 5905, Basic Research Lab for “Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)”, Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, , Seoul National University, ; Seoul, South Korea
                Article
                471
                10.1038/s12276-020-0471-4
                8080656
                32788656
                5941e104-c5f6-46e0-91de-4cea549f6c00
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 April 2020
                : 21 May 2020
                : 22 May 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003725, National Research Foundation of Korea (NRF);
                Award ID: 2020R1A2B5B02002658
                Award ID: 2017R1A4A1014587
                Award ID: 2017R1A2B3011778
                Award ID: 2019R1C1C1003669
                Award ID: 2018R1A6A3A01012572
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2020

                Molecular medicine
                osteoporosis,acetylation
                Molecular medicine
                osteoporosis, acetylation

                Comments

                Comment on this article