15
views
0
comments
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TIR1 auxin receptors are implicated in the differential response to 4-Cl-IAA and IAA in developing pea fruit

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pea auxin receptors PsTIR1a, PsTIR1b, and PsAFB2 are involved in auxin perception, and the TIR1s are implicated in the differential growth response to 4-Cl-IAA and IAA in pea fruit.

          Abstract

          The auxins indole-3-acetic acid (IAA) and 4-chloroindole-3-acetic acid (4-Cl-IAA) occur naturally in pea ( Pisum sativum); however, only 4-Cl-IAA mimics the presence of seeds in stimulating pericarp growth. To examine if this differential auxin effect is mediated through TIR1/AFB auxin receptors, pea TIR1 and AFB2 homologs were functionally characterized in Arabidopsis, and receptor expression, and auxin distribution and action were profiled in developing pea fruits. PsTIR1a, PsTIR1b, and PsAFB2 restored the auxin-sensitive root growth response to the mutant Arabidopsis seedlings Attir1-10 and/or Attir1-10 afb2-3. Expression of PsTIR1 or AtTIR1 in Attir1-10 afb2-3 mutants also restored the greater root inhibitory response of 4-Cl-IAA compared to that of IAA, implicating TIR1 receptors in this response. The ability of 4-Cl-IAA to stimulate a stronger DR5::GUS auxin response than IAA at the same concentration in pea pericarps was associated with its ability to enrich the auxin-receptor transcript pool with PsTIR1a and PsAFB2 by decreasing the transcript abundance of PsTIR1b (mimicking results in pericarps with developing seeds). Therefore, the markedly different effect of IAA and 4-Cl-IAA on pea fruit growth may at least partially involve TIR1/AFB receptors and the differential modulation of their population, resulting in specific Aux/IAA protein degradation that leads to an auxin-specific tissue response.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Assaying chimeric genes in plants: The GUS gene fusion system

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel sensor to map auxin response and distribution at high spatio-temporal resolution.

            Auxin is a key plant morphogenetic signal but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins. Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Auxin conjugates: their role for plant development and in the evolution of land plants.

              Auxin conjugates are thought to play important roles as storage forms for the active plant hormone indole-3-acetic acid (IAA). In its free form, IAA comprises only up to 25% of the total amount of IAA, depending on the tissue and the plant species studied. The major forms of IAA conjugate are low molecular weight ester or amide forms, but there is increasing evidence of the occurrence of peptides and proteins modified by IAA. Since the discovery of genes and enzymes involved in synthesis and hydrolysis of auxin conjugates, much knowledge has been gained on the biochemistry and function of these compounds, but there is still much to discover. For example, recent work has shown that some auxin conjugate hydrolases prefer conjugates with longer-chain auxins such as indole-3-propionic acid and indole-3-butyric acid as substrate. Also, the compartmentation of these reactions in the cell or in tissues has not been resolved in great detail. The function of auxin conjugates has been mainly elucidated by mutant analysis in genes for synthesis or hydrolysis and a possible function for conjugates inferred from these results. In the evolution of land plants auxin conjugates seem to be connected with the development of certain traits such as embryo, shoot, and vasculature. Most likely, the synthesis of auxin conjugates was developed first, since it has been already detected in moss, whereas sequences typical of auxin conjugate hydrolases were found according to database entries first in moss ferns. The implications for the regulation of auxin levels in different species will be discussed.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                01 February 2019
                30 January 2019
                30 January 2019
                : 70
                : 4
                : 1239-1253
                Affiliations
                Plant BioSystems, Department of Agricultural, Food and Nutritional Science University of Alberta, Edmonton, Alberta, Canada
                Author notes
                Present address: Group Technology and Research, DNV GL, Veritasveien 1, 1363 Høvik, Norway
                Author information
                http://orcid.org/0000-0003-0954-1076
                Article
                ery456
                10.1093/jxb/ery456
                6382345
                30715391
                598dccf7-8b90-41e3-b60a-0213036a93ae
                © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 September 2018
                : 07 January 2019
                Page count
                Pages: 15
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
                Award ID: 138166
                Categories
                Research Papers
                Growth and Development

                Plant science & Botany
                auxin,auxin receptors,4-chloroindole-3-acetic acid,fruit development,hormonal interaction,indole-3-acetic acid,pisum sativum,tir1/afb genes

                Comments

                Comment on this article