17
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxygen nanobubbles revert hypoxia by methylation programming

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Targeting the hypoxic tumor microenvironment has a broad impact in cancer epigenetics and therapeutics. Oxygen encapsulated nanosize carboxymethyl cellulosic nanobubbles were developed for mitigating the hypoxic regions of tumors to weaken the hypoxia-driven pathways and inhibit tumor growth. We show that 5-methylcytosine (5mC) hypomethylation in hypoxic regions of a tumor can be reverted to enhance cancer treatment by epigenetic regulation, using oxygen nanobubbles in the sub-100 nm size range, both, in vitro and in vivo. Oxygen nanobubbles were effective in significantly delaying tumor progression and improving survival rates in mice models. Further, significant hypermethylation was observed in promoter DNA region of BRCA1 due to oxygen nanobubble (ONB) treatment. The nanobubbles can also reprogram several hypoxia associated and tumor suppressor genes such as MAT2A and PDK-1, in addition to serving as an ultrasound contrast agent. Our approach to develop nanosized oxygen encapsulated bubbles as an ultrasound contrast agent for methylation reversal is expected to have a significant impact in epigenetic programming and to serve as an adjuvant to cancer treatment.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoxia in cancer: significance and impact on clinical outcome.

          Hypoxia, a characteristic feature of locally advanced solid tumors, has emerged as a pivotal factor of the tumor (patho-)physiome since it can promote tumor progression and resistance to therapy. Hypoxia represents a "Janus face" in tumor biology because (a) it is associated with restrained proliferation, differentiation, necrosis or apoptosis, and (b) it can also lead to the development of an aggressive phenotype. Independent of standard prognostic factors, such as tumor stage and nodal status, hypoxia has been suggested as an adverse prognostic factor for patient outcome. Studies of tumor hypoxia involving the direct assessment of the oxygenation status have suggested worse disease-free survival for patients with hypoxic cervical cancers or soft tissue sarcomas. In head & neck cancers the studies suggest that hypoxia is prognostic for survival and local control. Technical limitations of the direct O(2) sensing technique have prompted the use of surrogate markers for tumor hypoxia, such as hypoxia-related endogenous proteins (e.g., HIF-1alpha, GLUT-1, CA IX) or exogenous bioreductive drugs. In many - albeit not in all - studies endogenous markers showed prognostic significance for patient outcome. The prognostic relevance of exogenous markers, however, appears to be limited. Noninvasive assessment of hypoxia using imaging techniques can be achieved with PET or SPECT detection of radiolabeled tracers or with MRI techniques (e.g., BOLD). Clinical experience with these methods regarding patient prognosis is so far only limited. In the clinical studies performed up until now, the lack of standardized treatment protocols, inconsistencies of the endpoints characterizing the oxygenation status and methodological differences (e.g., different immunohistochemical staining procedures) may compromise the power of the prognostic parameter used.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy.

            5-Azacytidine was first synthesized almost 40 years ago. It was demonstrated to have a wide range of anti-metabolic activities when tested against cultured cancer cells and to be an effective chemotherapeutic agent for acute myelogenous leukemia. However, because of 5-azacytidine's general toxicity, other nucleoside analogs were favored as therapeutics. The finding that 5-azacytidine was incorporated into DNA and that, when present in DNA, it inhibited DNA methylation, led to widespread use of 5-azacytidine and 5-aza-2'-deoxycytidine (Decitabine) to demonstrate the correlation between loss of methylation in specific gene regions and activation of the associated genes. There is now a revived interest in the use of Decitabine as a therapeutic agent for cancers in which epigenetic silencing of critical regulatory genes has occurred. Here, the current status of our understanding of the mechanism(s) by which 5-azacytosine residues in DNA inhibit DNA methylation is reviewed with an emphasis on the interactions of these residues with bacterial and mammalian DNA (cytosine-C5) methyltransferases. The implications of these mechanistic studies for development of less toxic inhibitors of DNA methylation are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenetic therapy of cancer: past, present and future.

              The initiation and progression of cancer is controlled by both genetic and epigenetic events. Unlike genetic alterations, which are almost impossible to reverse, epigenetic aberrations are potentially reversible, allowing the malignant cell population to revert to a more normal state. With the advent of numerous drugs that target specific enzymes involved in the epigenetic regulation of gene expression, the utilization of epigenetic targets is emerging as an effective and valuable approach to chemotherapy as well as chemoprevention of cancer.
                Bookmark

                Author and article information

                Contributors
                josephi@purdue.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 August 2017
                24 August 2017
                2017
                : 7
                : 9268
                Affiliations
                [1 ]ISNI 0000 0004 1937 2197, GRID grid.169077.e, Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, , Purdue University, ; 225 South University Street, West Lafayette, Indiana, 47907 USA
                [2 ]ISNI 0000 0004 1937 2197, GRID grid.169077.e, Department of Comparative Pathobiology, , Purdue University, ; West Lafayette, Indiana, 47907 USA
                [3 ]ISNI 0000 0004 1937 2197, GRID grid.169077.e, Weldon School of Biomedical Engineering, , Purdue University, ; West Lafayette, Indiana, 47907 USA
                [4 ]Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907 USA
                Author information
                http://orcid.org/0000-0001-8883-7953
                Article
                8988
                10.1038/s41598-017-08988-7
                5570893
                28839175
                5a13d2da-2f6c-4964-9ded-77a19211dd5d
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 27 February 2017
                : 14 July 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article