Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soil microorganisms play a crucial role in the biogeochemical cycling of nutrient elements and maintaining soil health. We aimed to investigate the response of bacteria communities to organic farming over different crops (rice, tea and vegetable) along the middle and lower reaches of the Yangtze River of China. Compared with conventional farming, organic farming significantly increased soil nutrients, soil enzyme activities, and bacterial richness and diversity. A Venn diagram and principal component analysis revealed that the soils with 3 different crops under organic farming have more number and percent of shared OTUs (operational taxonomic units), and shared a highly similar microbial community structure. Under organic farming, several predominant guilds and major bacterial lineages (Rhizobiales, Thiotrichaceae, Micromonosporaceae, Desulfurellaceae and Myxococcales) contributing to nutrient (C, N, S and P) cycling were enriched, whereas the relative abundances of acid and alkali resistant microorganisms (Acidobacteriaceae and Sporolactobacillaceae) were increased under conventional farming practices. Our results indicated that, for all three crops, organic farming have a more stable microflora and the uniformity of the bacterial community structure. Organic agriculture significantly increased the abundance of some nutrition-related bacteria, while reducing some of the abundance of acid and alkali resistant bacteria.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Soil fertility and biodiversity in organic farming.

            An understanding of agroecosystems is key to determining effective farming systems. Here we report results from a 21-year study of agronomic and ecological performance of biodynamic, bioorganic, and conventional farming systems in Central Europe. We found crop yields to be 20% lower in the organic systems, although input of fertilizer and energy was reduced by 34 to 53% and pesticide input by 97%. Enhanced soil fertility and higher biodiversity found in organic plots may render these systems less dependent on external inputs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Initial community evenness favours functionality under selective stress.

              Owing to the present global biodiversity crisis, the biodiversity-stability relationship and the effect of biodiversity on ecosystem functioning have become major topics in ecology. Biodiversity is a complex term that includes taxonomic, functional, spatial and temporal aspects of organismic diversity, with species richness (the number of species) and evenness (the relative abundance of species) considered among the most important measures. With few exceptions (see, for example, ref. 6), the majority of studies of biodiversity-functioning and biodiversity-stability theory have predominantly examined richness. Here we show, using microbial microcosms, that initial community evenness is a key factor in preserving the functional stability of an ecosystem. Using experimental manipulations of both richness and initial evenness in microcosms with denitrifying bacterial communities, we found that the stability of the net ecosystem denitrification in the face of salinity stress was strongly influenced by the initial evenness of the community. Therefore, when communities are highly uneven, or there is extreme dominance by one or a few species, their functioning is less resistant to environmental stress. Further unravelling how evenness influences ecosystem processes in natural and humanized environments constitutes a major future conceptual challenge.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                11 October 2016
                2016
                : 6
                : 35046
                Affiliations
                [1 ]Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University , Nanjing 210095, China
                [2 ]Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008, China
                [3 ]Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection , Nanjing 210042, China
                [4 ]Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University , Nanjing 210095, China
                Author notes
                Article
                srep35046
                10.1038/srep35046
                5057158
                27725750
                5a354ec4-f2a0-4d17-a14e-e84d23aa4351
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 01 June 2016
                : 15 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article