16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      From swimming to walking with a salamander robot driven by a spinal cord model.

      Science (New York, N.Y.)
      Animals, Biological Evolution, Biomechanical Phenomena, Brain Stem, physiology, Electric Stimulation, Extremities, innervation, Gait, Locomotion, Mathematics, Models, Biological, Models, Neurological, Motor Neurons, Nerve Net, Pleurodeles, anatomy & histology, Robotics, Spinal Cord, Swimming, Walking

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transition from aquatic to terrestrial locomotion was a key development in vertebrate evolution. We present a spinal cord model and its implementation in an amphibious salamander robot that demonstrates how a primitive neural circuit for swimming can be extended by phylogenetically more recent limb oscillatory centers to explain the ability of salamanders to switch between swimming and walking. The model suggests neural mechanisms for modulation of velocity, direction, and type of gait that are relevant for all tetrapods. It predicts that limb oscillatory centers have lower intrinsic frequencies than body oscillatory centers, and we present biological data supporting this.

          Related collections

          Author and article information

          Comments

          Comment on this article