762
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lactate-Modulated Induction of THBS-1 Activates Transforming Growth Factor (TGF)-beta2 and Migration of Glioma Cells In Vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF)-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1), a TGF-beta activating protein.

          Methods

          Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA) and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays.

          Results

          Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells.

          Conclusion

          We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          On the origin of cancer cells.

          O WARBURG (1956)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Making sense of latent TGFbeta activation.

            TGFbeta is secreted as part of a latent complex that is targeted to the extracellular matrix. A variety of molecules, 'TGFbeta activators,' release TGFbeta from its latent state. The unusual temporal discontinuity of TGFbeta synthesis and action and the panoply of TGFbeta effects contribute to the interest in TGF-beta. However, the logical connections between TGFbeta synthesis, storage and action are obscure. We consider the latent TGFbeta complex as an extracellular sensor in which the TGFbeta propeptide functions as the detector, latent-TGFbeta-binding protein (LTBP) functions as the localizer, and TGF-beta functions as the effector. Such a view provides a logical continuity for various aspects of TGFbeta biology and allows us to appreciate TGFbeta biology from a new perspective.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles.

              Although glioblastomas show the same histologic phenotype, biological hallmarks such as growth and differentiation properties vary considerably between individual cases. To investigate whether different subtypes of glioblastomas might originate from different cells of origin, we cultured tumor cells from 22 glioblastomas under medium conditions favoring the growth of neural and cancer stem cells (CSC). Secondary glioblastoma (n = 7)-derived cells did not show any growth in the medium used, suggesting the absence of neural stem cell-like tumor cells. In contrast, 11/15 primary glioblastomas contained a significant CD133(+) subpopulation that displayed neurosphere-like, nonadherent growth and asymmetrical cell divisions yielding cells expressing markers characteristic for all three neural lineages. Four of 15 cell lines derived from primary glioblastomas grew adherently in vitro and were driven by CD133(-) tumor cells that fulfilled stem cell criteria. Both subtypes were similarly tumorigenic in nude mice in vivo. Clinically, CD133(-) glioblastomas were characterized by a lower proliferation index, whereas glial fibrillary acidic protein staining was similar. GeneArray analysis revealed 117 genes to be differentially expressed by these two subtypes. Together, our data provide first evidence that CD133(+) CSC maintain only a subset of primary glioblastomas. The remainder stems from previously unknown CD133(-) tumor cells with apparent stem cell-like properties but distinct molecular profiles and growth characteristics in vitro and in vivo.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                1 November 2013
                : 8
                : 11
                : e78935
                Affiliations
                [1 ]Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
                [2 ]Institute of Pathology, University of Regensburg, Regensburg, Germany
                [3 ]Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany
                [4 ]Department of Neurosurgery, University of Regensburg, Medical School, Regensburg, Germany
                [5 ]Institute for Functional Genomics, Biopark I, Regensburg, Germany
                University Hospital of Heidelberg, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CS PL SM BJ MK AVZ PH. Performed the experiments: CS PL BJ MK AVZ. Analyzed the data: CS PL CL MK A. Bosserhoff MP UB A. Brawanski AVZ PH. Contributed reagents/materials/analysis tools: PL SM BJ CL MK A. Brawanski AVZ PH. Wrote the manuscript: CS PL SM BJ CL MK A. Brawanski MP UB A. Bosserhoff AVZ PH.

                Article
                PONE-D-13-24320
                10.1371/journal.pone.0078935
                3815307
                24223867
                5a910f62-77fb-431e-b809-4d81ec295e66
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 June 2013
                : 17 September 2013
                Funding
                Part of the work was funded by an internal grant of the University Hospital Regensburg (ReForM-C). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article